如何在张量流中将序列映射到序列?

时间:2019-09-17 11:03:27

标签: python tensorflow

我有一个3维形状的矩阵(高度,宽度,4)。实际上,这是每个像素具有RGBA值的位图。我想将每个RGBA集减少为具有两个值的集,例如[x,y]。

在imgur com / Blr2EQC上查看图片

我尝试使用map_fn

import cv2
import tensorflow as tf

def map_pixel_to_vector(elt):
    b = elt[0] - 127
    g = elt[1] - 127
    r = elt[2] - 127
    a = elt[3] - 127

    dx = (g * 127) + r
    dy = (a * 127) + b
    return [dx,dy]

file = "example.png"
frame = cv2.imread(file, cv2.IMREAD_UNCHANGED
s = tf.shape(frame)

# reshape to list of pixels
elts = tf.reshape(frame, (s[0]*s[1],4))

# cast from uint8 to int32 to support negative output
elts = tf.dtypes.cast(elts, tf.int32)

# map each pixel to output
elts = tf.map_fn(map_pixel_to_vector, elts)

# reshape back to image resolution
elts = tf.reshape(elts, (s[0], s[1], 2)

现在,我希望它能正常工作,每个[rgba]像素将减少为[xy]像素,但我得到

ValueError: The two structures don't have the same nested structure.

First structure: type=DType str=<dtype: 'int32'>

Second structure: type=list str=[<tf.Tensor: id=262537, shape=(), dtype=int32, numpy=98>, <tf.Tensor: id=262540, shape=(), dtype=int32, numpy=210>]

More specifically: Substructure "type=list str=[<tf.Tensor: id=262537, shape=(), dtype=int32, numpy=98>, <tf.Tensor: id=262540, shape=(), dtype=int32, numpy=210>]" is a sequence, while substructure "type=DType str=<dtype: 'int32'>" is not

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "main.py", line 97, in <module>
    loss = loss_fn(exc, [outputs[-1]], [inputs[-1]])
  File "main.py", line 36, in loss_fn
    elts = tf.map_fn(reduce_pixel_to_vector, elts)
  File "/usr/lib/python3.7/site-packages/tensorflow_core/python/ops/map_fn.py", line 268, in map_fn
    maximum_iterations=n)
  File "/usr/lib/python3.7/site-packages/tensorflow_core/python/ops/control_flow_ops.py", line 2714, in while_loop
    loop_vars = body(*loop_vars)
  File "/usr/lib/python3.7/site-packages/tensorflow_core/python/ops/control_flow_ops.py", line 2705, in <lambda>
    body = lambda i, lv: (i + 1, orig_body(*lv))
  File "/usr/lib/python3.7/site-packages/tensorflow_core/python/ops/map_fn.py", line 258, in compute
    nest.assert_same_structure(dtype or elems, packed_fn_values)
  File "/usr/lib/python3.7/site-packages/tensorflow_core/python/util/nest.py", line 313, in assert_same_structure
    % (str(e), str1, str2))

任何帮助将不胜感激。

1 个答案:

答案 0 :(得分:1)

您的函数map_pixel_to_vector返回一个列表,而不是张量。您可以使用tf.stacktf.convert_to_tensor将其设为张量:

def map_pixel_to_vector(elt):
    b = elt[0] - 127
    g = elt[1] - 127
    r = elt[2] - 127
    a = elt[3] - 127

    dx = (g * 127) + r
    dy = (a * 127) + b
    return tf.stack([dx, dy])

但是,您可以像这样tf.map_fn来更简单,更有效地执行相同的操作:

import tensorflow as tf
import cv2

file = "example.png"
frame = tf.constant(cv2.imread(file, cv2.IMREAD_UNCHANGED))
elts = tf.dtypes.cast(frame, tf.int32)
r, g, b, a = tf.unstack(elts - 127, num=4, axis=-1)
elts = tf.stack([(g * 127) + r, (a * 127) + b], axis=-1)