使用df1中的值从df2中检索值,其中df2列和索引包含一系列值

时间:2019-09-12 07:15:50

标签: python pandas dataframe lookup

我有一个数据框,其中包含员工信息,例如姓名,Performance_factor_1和Performance_factor_2。

我还有另一个数据框,可以根据Performance_factor_1和Performance_actor_2来获得报酬。

df1

Name                  pf1       pf2     pf3
Adam                  14.6      8.9     59 
Bob                   13.2      9       75
Charlie               11.1      9.1     89
Dylan                 14.6      9       97
Eric                  11.1      8.8     105
Fedderick             12.5      9.2     69

df2 数据框2的行为performance_factor_1,列为performance_factor_2。

pf1       8.8-8.9  9.0-9.2 9.3-9.4  9.5-9.6  9.7-10
11.1 to 14  100      200    300       400     500
8.1 to 11   200      300    400       500     600
6.1 to 8    300      400    500       600     700
below 6     400      500    600       700     800     

我想做的是,如果p3大于70,则将df1的第三列费用添加如下: df1

Name                  pf1       pf2      pay
Adam                  14.6      8.9      200
Bob                   13.2      9        400
Charlie               11.1      9.1      700
Dylan                 14.6      9        300
Eric                  11.1      8.8      400
Fedderick             12.5      9.2      700

我在较早的帖子How to create Column C on DF1 using values from DF2 using Column A and B中尝试过的方法是为pf1索引物理列出14,13.9 --- 0.1,0, 列出8.8、8.9-10,然后使用查找来匹配确切的pf1和pf2值。但是,如果df2发生变化,这将无法长期解决,因为将需要进行大量手动操作来更改df2的大多数值。

这是我尝试在精确值匹配查找方法中使用的代码:

df_outer.reset_index(inplace=True)

df3 = indiv.rename(index= lambda x: int(x * 10),
                 columns= lambda x: int(float(x) * 10))
out= []
for row, col in zip(df_outer['TTR'].mul(10).astype(int), df_outer['CSAT (NSE)'].mul(10).astype(int)):
    try:
        out.append(df3.at[row, col] )
    except KeyError:
        out.append(np.nan)

df_outer['Pay'] = out

df_outer.loc[df_outer['# of Closed SRs']>=70, 'Pay_new'] = df_outer['Pay']
print (df_outer)

编辑: 所以最后,我得到以下输出。但是它使用的是df2(旧),我想使用df2(新)获取我的输出


       Name   pf1  pf2  pf3  Pay  
0       Adam  14.6  8.9   59  NaN    
1        Bob  13.2  9.0   75  400    
2    Charlie  11.1  9.1   89  700    
3      Dylan  14.6  9.0   97  300    
4       Eric  11.1  8.8  105  400    
5  Fedderick  12.5  9.2   69  NaN    

以前,我的df2(旧)是这样

pf1     8.8 8.9 9   9.1 9.2
14.6    100 200 300 400 500
13.2    200 300 400 500 600
12.5    300 400 500 600 700
11.1    400 500 600 700 800

现在我希望我的df2(新)像这样

pf1       8.8-8.9  9.0-9.2 9.3-9.4  9.5-9.6  9.7-10
11.1 to 14  100      200    300       400     500
8.1 to 11   200      300    400       500     600
6.1 to 8    300      400    500       600     700
below 6     400      500    600       700     800   

编辑2: 我的df 2在csv中看起来像这样:

enter image description here

1 个答案:

答案 0 :(得分:1)

在此处可以通过IntervalIndex.from_tuples在列中创建IntervalIndex,并在df2 DataFrame中创建索引,然后使用IntervalIndex.get_loc来更改查找:

第一次测试:

print (df2.columns)
Index(['8.8-8.9', '9.0-9.2', '9.3-9.4', '9.5-9.6', '9.7-10'], dtype='object')

print (df2.index)
Index(['11.1 to 14', '8.1 to 11', '6.1 to 8', 'below 6'], dtype='object', name='pf1')

c = [(float(x[0]), float(x[1])) for x in df2.columns.str.split('-')]
i = [(0, float(x[0].split()[1])) if 'below' in x[0] else (float(x[0]), float(x[1])) 
                               for x in df2.index.str.split(' to ')]

print (i)
[(11.1, 14.0), (8.1, 11.0), (6.1, 8.0), (0, 6.0)]

print (c)
[(8.8, 8.9), (9.0, 9.2), (9.3, 9.4), (9.5, 9.6), (9.7, 10.0)]

df2.columns = pd.IntervalIndex.from_tuples(c, closed='both')    
df2.index = pd.IntervalIndex.from_tuples(i, closed='both')
print (df2)
              [8.8, 8.9]  [9.0, 9.2]  [9.3, 9.4]  [9.5, 9.6]  [9.7, 10.0]
[11.1, 14.0]         100         200         300         400          500
[8.1, 11.0]          200         300         400         500          600
[6.1, 8.0]           300         400         500         600          700
[0.0, 6.0]           400         500         600         700          800

out= []
for row, col in zip(df1['pf1'], df1['pf2']):
    try:
        out.append(df2.iat[df2.index.get_loc(row), df2.columns.get_loc(col)])
    except KeyError:
        out.append(np.nan)

df1['Pay'] = out
print (df1)
        Name   pf1  pf2  pf3    Pay
0       Adam  14.6  8.9   59    NaN
1        Bob  13.2  9.0   75  200.0
2    Charlie  11.1  9.1   89  200.0
3      Dylan  14.6  9.0   97    NaN
4       Eric  11.1  8.8  105  100.0
5  Fedderick  12.5  9.2   69  200.0