仅读取所选列

时间:2011-04-26 08:58:47

标签: r import r-faq

有人可以告诉我如何只阅读以下数据的前6个月(7列),例如使用read.table()

Year   Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec   
2009   -41  -27  -25  -31  -31  -39  -25  -15  -30  -27  -21  -25
2010   -41  -27  -25  -31  -31  -39  -25  -15  -30  -27  -21  -25 
2011   -21  -27   -2   -6  -10  -32  -13  -12  -27  -30  -38  -29

6 个答案:

答案 0 :(得分:150)

假设数据位于文件data.txt中,您可以使用colClasses的{​​{1}}参数跳过列。前7列中的数据为read.table(),我们将剩余的6列设置为"integer",表示应跳过这些列

"NULL"

根据实际的数据类型,将> read.table("data.txt", colClasses = c(rep("integer", 7), rep("NULL", 6)), + header = TRUE) Year Jan Feb Mar Apr May Jun 1 2009 -41 -27 -25 -31 -31 -39 2 2010 -41 -27 -25 -31 -31 -39 3 2011 -21 -27 -2 -6 -10 -32 更改为"integer"中详述的其中一种可接受的类型。

?read.table看起来像这样:

data.txt

并使用

创建
$ cat data.txt 
"Year" "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
2009 -41 -27 -25 -31 -31 -39 -25 -15 -30 -27 -21 -25
2010 -41 -27 -25 -31 -31 -39 -25 -15 -30 -27 -21 -25
2011 -21 -27 -2 -6 -10 -32 -13 -12 -27 -30 -38 -29

其中write.table(dat, file = "data.txt", row.names = FALSE)

dat

如果事先不知道列数,则效用函数dat <- structure(list(Year = 2009:2011, Jan = c(-41L, -41L, -21L), Feb = c(-27L, -27L, -27L), Mar = c(-25L, -25L, -2L), Apr = c(-31L, -31L, -6L ), May = c(-31L, -31L, -10L), Jun = c(-39L, -39L, -32L), Jul = c(-25L, -25L, -13L), Aug = c(-15L, -15L, -12L), Sep = c(-30L, -30L, -27L ), Oct = c(-27L, -27L, -30L), Nov = c(-21L, -21L, -38L), Dec = c(-25L, -25L, -29L)), .Names = c("Year", "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"), class = "data.frame", row.names = c(NA, -3L)) 将读取文件并计算每行中的字段数。

count.fields

答案 1 :(得分:54)

要从数据集中读取特定的一组列,还有其他几个选项:

1)来自fread的{​​{1}} - 包:

您可以使用data.table包中select的{​​{1}}参数指定所需的列。您可以使用列名称或列号向量指定列。

对于示例数据集:

fread

或者,您可以使用data.table参数指示不应读取哪些列:

library(data.table)
dat <- fread("data.txt", select = c("Year","Jan","Feb","Mar","Apr","May","Jun"))
dat <- fread("data.txt", select = c(1:7))

所有结果都是:

drop

更新:如果您不希望dat <- fread("data.txt", drop = c("Jul","Aug","Sep","Oct","Nov","Dec")) dat <- fread("data.txt", drop = c(8:13)) 返回 data.table ,请使用> data Year Jan Feb Mar Apr May Jun 1 2009 -41 -27 -25 -31 -31 -39 2 2010 -41 -27 -25 -31 -31 -39 3 2011 -21 -27 -2 -6 -10 -32 - 参数,例如:fread < / p>

2)来自data.table = FALSE的{​​{1}} - 包:

另一个替代方案是fread("data.txt", select = c(1:7), data.table = FALSE)包中的read.csv.sql函数:

sqldf

3)read.csv.sql - 来自sqldf - 包的功能:

library(sqldf)
dat <- read.csv.sql("data.txt",
                    sql = "select Year,Jan,Feb,Mar,Apr,May,Jun from file",
                    sep = "\t")

从文档中解释使用read_*的所用字符:

  

每个字符代表一列:c =字符,i =整数,n =数字,d = double,l =逻辑,D =日期,T =日期时间,t =时间,? = guess,或_ / - 跳过列

答案 2 :(得分:7)

您也可以使用JDBC来实现此目的。让我们创建一个示例csv文件。

write.table(x=mtcars, file="mtcars.csv", sep=",", row.names=F, col.names=T) # create example csv file

从以下链接下载并保存CSV JDBC驱动程序:http://sourceforge.net/projects/csvjdbc/files/latest/download

> library(RJDBC)

> path.to.jdbc.driver <- "jdbc//csvjdbc-1.0-18.jar"
> drv <- JDBC("org.relique.jdbc.csv.CsvDriver", path.to.jdbc.driver)
> conn <- dbConnect(drv, sprintf("jdbc:relique:csv:%s", getwd()))

> head(dbGetQuery(conn, "select * from mtcars"), 3)
   mpg cyl disp  hp drat    wt  qsec vs am gear carb
1   21   6  160 110  3.9  2.62 16.46  0  1    4    4
2   21   6  160 110  3.9 2.875 17.02  0  1    4    4
3 22.8   4  108  93 3.85  2.32 18.61  1  1    4    1

> head(dbGetQuery(conn, "select mpg, gear from mtcars"), 3)
   MPG GEAR
1   21    4
2   21    4
3 22.8    4

答案 3 :(得分:1)

您这样做:

df = read.table("file.txt", nrows=1, header=TRUE, sep="\t", stringsAsFactors=FALSE)
colClasses = as.list(apply(df, 2, class))
needCols = c("Year", "Jan", "Feb", "Mar", "Apr", "May", "Jun")
colClasses[!names(colClasses) %in% needCols] = list(NULL)
df = read.table("file.txt", header=TRUE, colClasses=colClasses, sep="\t", stringsAsFactors=FALSE)

答案 4 :(得分:1)

vroom package 提供了一种在导入期间按名称选择/删除列的“整洁”方法。文档:https://www.tidyverse.org/blog/2019/05/vroom-1-0-0/#column-selection

列选择(col_select)

vroom 参数 'col_select' 使选择列以保持(或省略)更简单。 col_select 的接口与 dplyr::select() 相同。

按名称选择列
data <- vroom("flights.tsv", col_select = c(year, flight, tailnum))
#> Observations: 336,776
#> Variables: 3
#> chr [1]: tailnum
#> dbl [2]: year, flight
#> 
#> Call `spec()` for a copy-pastable column specification
#> Specify the column types with `col_types` to quiet this message
按名称删除列
data <- vroom("flights.tsv", col_select = c(-dep_time, -air_time:-time_hour))
#> Observations: 336,776
#> Variables: 13
#> chr [4]: carrier, tailnum, origin, dest
#> dbl [9]: year, month, day, sched_dep_time, dep_delay, arr_time, sched_arr_time, arr...
#> 
#> Call `spec()` for a copy-pastable column specification
#> Specify the column types with `col_types` to quiet this message
Use the selection helpers
data <- vroom("flights.tsv", col_select = ends_with("time"))
#> Observations: 336,776
#> Variables: 5
#> dbl [5]: dep_time, sched_dep_time, arr_time, sched_arr_time, air_time
#> 
#> Call `spec()` for a copy-pastable column specification
#> Specify the column types with `col_types` to quiet this message
或按名称重命名列
data <- vroom("flights.tsv", col_select = list(plane = tailnum, everything()))
#> Observations: 336,776
#> Variables: 19
#> chr  [ 4]: carrier, tailnum, origin, dest
#> dbl  [14]: year, month, day, dep_time, sched_dep_time, dep_delay, arr_time, sched_arr...
#> dttm [ 1]: time_hour
#> 
#> Call `spec()` for a copy-pastable column specification
#> Specify the column types with `col_types` to quiet this message
data
#> # A tibble: 336,776 x 19
#>    plane  year month   day dep_time sched_dep_time dep_delay arr_time
#>    <chr> <dbl> <dbl> <dbl>    <dbl>          <dbl>     <dbl>    <dbl>
#>  1 N142…  2013     1     1      517            515         2      830
#>  2 N242…  2013     1     1      533            529         4      850
#>  3 N619…  2013     1     1      542            540         2      923
#>  4 N804…  2013     1     1      544            545        -1     1004
#>  5 N668…  2013     1     1      554            600        -6      812
#>  6 N394…  2013     1     1      554            558        -4      740
#>  7 N516…  2013     1     1      555            600        -5      913
#>  8 N829…  2013     1     1      557            600        -3      709
#>  9 N593…  2013     1     1      557            600        -3      838
#> 10 N3AL…  2013     1     1      558            600        -2      753
#> # … with 336,766 more rows, and 11 more variables: sched_arr_time <dbl>,
#> #   arr_delay <dbl>, carrier <chr>, flight <dbl>, origin <chr>,
#> #   dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
#> #   time_hour <dttm>

答案 5 :(得分:0)

一种简单的方法:

data <- read.table("dataname.csv", header = TRUE, sep = ",")[,1:7]