根据值和NaN合并熊猫行

时间:2019-09-07 15:07:57

标签: python pandas dataframe

我的数据框如下:

   -nd
   --no-directories
       Do not create a hierarchy of directories when retrieving recursively.  With this option turned on, all files will get saved to the current directory, without clobbering (if a name shows up more than once, the
       filenames will get extensions .n).


   -np
   --no-parent
       Do not ever ascend to the parent directory when retrieving recursively.  This is a useful option, since it guarantees that only the files below a certain hierarchy will be downloaded.

要求是: ID是关键。我有3行ID2。因此,我需要将两行合并为1行,这样我对所有列都具有有效值(不包括Null和空格)。

我的预期输出是:

ID  VALUE1  VALUE2  VALUE3
1   NaN     [ab,c]  Good
1   google  [ab,c]  Good
2   NaN     [ab,c1] NaN
2   First   [ab,c1] Good1
2   First   [ab,c1]  
3   NaN     [ab,c]  Good        

我们是否有任何熊猫函数来实现这一目标,或者我是否必须将数据分为两个或多个数据帧以及基于NaN /空间进行合并的过程? 谢谢您的帮助

2 个答案:

答案 0 :(得分:1)

Micheal G在上面有一个更优雅的解决方案。 这是我比较耗时和业余的方法:

import pandas as pd
import numpy as np
df = pd.DataFrame({"ID": [1,1,2,2,2,3],
        "V1": [np.nan,'google',np.nan,'First','First',np.nan],
        "V2": [['ab','c'],['ab','c'],['ab','c1'],['ab','c1'],['ab','c1'],['ab','c']],
        "V3": ['Good','Good',np.nan,np.nan,'Good1','Good']
    })
uniq = df.ID.unique() #Get the unique values in ID
df = df.set_index(['ID']) #Since we are try find the rows with the least amount of nan's.
#Setting the index by ID is going to make our future statements faster and easier.
newDf = pd.DataFrame()
for i in uniq: #Running the loop per unique value in column ID
    temp = df.loc[i]
    if(isinstance(temp, pd.Series)): #if there is only 1 row with the i, add that row to out new DataFrame
        newDf = newDf.append(temp)
    else:
        NonNanCountSeries = temp.apply(lambda x: x.count(), axis=1)
        #Get the number of non-nan's in the per each row. It is given in list.
        NonNanCountList = NonNanCountSeries.tolist()
        newDf = newDf.append(temp.iloc[NonNanCountList.index(max(NonNanCountList))])
        #Let's break this down.
        #Find the max in out nanCountList: max(NonNanCountList))
        #Find the index of where the max is. Paraphrased: get the row number with the  
        #most amount of non-nan's: NonNanCountList.index(max(NonNanCountList))
        #Get the row by passing the index into temp.iloc
        #Add the row to newDf and update newDf

print(newDf)

应该返回:

       V1        V2     V3
1  google   [ab, c]   Good
2   First  [ab, c1]  Good1
3     NaN   [ab, c]   Good

答案 1 :(得分:0)

注意,我将Google大写。

import pandas as pd
import numpy as np

data = {'ID' : [1,1,2,2,2,3], 'VALUE1':['NaN','Google','NaN', 'First', 'First','NaN'], 'VALUE2':['abc', 'abc', 'abc1', 'abc1', 'abc1', 'abc'], 'VALUE3': ['Good', 'Good', 'NaN', 'Good1', '0', 'Good']}        
df = pd.DataFrame(data)
df_ = df.replace('NaN', np.NaN).fillna('zero', inplace=False)
df2 = df_.sort_values(['VALUE1', 'ID'])
mask = df2.ID.duplicated()
print (df_[~mask])

输出

   ID  VALUE1 VALUE2 VALUE3
1   1  Google    abc   Good
3   2   First   abc1  Good1
5   3    zero    abc   Good

最后,请注意蒙版中的tilda字符(〜)是必不可少的