我想从hdfs中的json文件创建pyspark数据框。
json文件具有以下内容:
{ “产品”:{ “ 0”:“台式计算机”, “ 1”:“平板电脑”, “ 2”:“ iPhone”, “ 3”:“笔记本电脑” }, “价钱”: { “ 0”:700, “ 1”:250, “ 2”:800, “ 3”:1200 } }
然后,我使用pyspark 2.4.4 df = spark.read.json("/path/file.json")
所以,我得到这样的结果:
df.show(truncate=False)
+---------------------+---------------------------------+
|Price |Product |
+---------------------+---------------------------------+
|[700, 250, 800, 1200]|[Desktop, Tablet, Iphone, Laptop]|
+---------------------+---------------------------------+
但是我想要一个具有以下结构的数据框:
+-------+--------+
|Price |Product |
+-------+--------+
|700 |Desktop |
|250 |Tablet |
|800 |Iphone |
|1200 |Laptop |
+-------+--------+
如何使用pyspark获取具有先前结构的数据框?
我尝试使用爆炸df.select(explode("Price"))
,但出现以下错误:
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
/usr/lib/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
/usr/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
327 "An error occurred while calling {0}{1}{2}.\n".
--> 328 format(target_id, ".", name), value)
329 else:
Py4JJavaError: An error occurred while calling o688.select.
: org.apache.spark.sql.AnalysisException: cannot resolve 'explode(`Price`)' due to data type mismatch: input to function explode should be array or map type, not struct<0:bigint,1:bigint,2:bigint,3:bigint>;;
'Project [explode(Price#107) AS List()]
+- LogicalRDD [Price#107, Product#108], false
at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:97)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:89)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:289)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:289)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:288)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:286)
at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$transformExpressionsUp$1.apply(QueryPlan.scala:95)
at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$transformExpressionsUp$1.apply(QueryPlan.scala:95)
at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1.apply(QueryPlan.scala:107)
at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1.apply(QueryPlan.scala:107)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpression$1(QueryPlan.scala:106)
at org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$1(QueryPlan.scala:118)
at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$1$1.apply(QueryPlan.scala:122)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.AbstractTraversable.map(Traversable.scala:104)
at org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$1(QueryPlan.scala:122)
at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$2.apply(QueryPlan.scala:127)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.plans.QueryPlan.mapExpressions(QueryPlan.scala:127)
at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:95)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:89)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:84)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:127)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:84)
at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:92)
at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:105)
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:57)
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:55)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:47)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:74)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$withPlan(Dataset.scala:3301)
at org.apache.spark.sql.Dataset.select(Dataset.scala:1312)
at sun.reflect.GeneratedMethodAccessor47.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
During handling of the above exception, another exception occurred:
AnalysisException Traceback (most recent call last)
<ipython-input-46-463397adf153> in <module>
----> 1 df.select(explode("Price"))
/usr/lib/spark/python/pyspark/sql/dataframe.py in select(self, *cols)
1200 [Row(name=u'Alice', age=12), Row(name=u'Bob', age=15)]
1201 """
-> 1202 jdf = self._jdf.select(self._jcols(*cols))
1203 return DataFrame(jdf, self.sql_ctx)
1204
/usr/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py in __call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id, self.name)
1258
1259 for temp_arg in temp_args:
/usr/lib/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
67 e.java_exception.getStackTrace()))
68 if s.startswith('org.apache.spark.sql.AnalysisException: '):
---> 69 raise AnalysisException(s.split(': ', 1)[1], stackTrace)
70 if s.startswith('org.apache.spark.sql.catalyst.analysis'):
71 raise AnalysisException(s.split(': ', 1)[1], stackTrace)
AnalysisException: "cannot resolve 'explode(`Price`)' due to data type mismatch: input to function explode should be array or map type, not struct<0:bigint,1:bigint,2:bigint,3:bigint>;;\n'Project [explode(Price#107) AS List()]\n+- LogicalRDD [Price#107, Product#108], false\n"
答案 0 :(得分:1)
重新创建您的DataFrame:
from pyspark.sql import functions as F
df = spark.read.json("./row.json")
df.printSchema()
#root
# |-- Price: struct (nullable = true)
# | |-- 0: long (nullable = true)
# | |-- 1: long (nullable = true)
# | |-- 2: long (nullable = true)
# | |-- 3: long (nullable = true)
# |-- Product: struct (nullable = true)
# | |-- 0: string (nullable = true)
# | |-- 1: string (nullable = true)
# | |-- 2: string (nullable = true)
# | |-- 3: string (nullable = true)
如上面printSchema
输出中所示,您的Price
和Product
列为struct
。因此explode
将不起作用,因为它需要ArrayType
或MapType
。
首先,使用struct
表示法将arrays
转换为.*
,如Querying Spark SQL DataFrame with complex types所示:
df = df.select(
F.array(F.expr("Price.*")).alias("Price"),
F.array(F.expr("Product.*")).alias("Product")
)
df.printSchema()
#root
# |-- Price: array (nullable = false)
# | |-- element: long (containsNull = true)
# |-- Product: array (nullable = false)
# | |-- element: string (containsNull = true)
现在,由于您正在使用 Spark 2.4 + ,因此在使用{{1之前,您可以使用arrays_zip
将Price
和Product
数组压缩在一起}}:
explode
对于旧版本的Spark,在df.withColumn("price_product", F.explode(F.arrays_zip("Price", "Product")))\
.select("price_product.Price", "price_product.Product")\
.show()
#+-----+----------------+
#|Price| Product|
#+-----+----------------+
#| 700|Desktop Computer|
#| 250| Tablet|
#| 800| iPhone|
#| 1200| Laptop|
#+-----+----------------+
之前,您可以分别展开每一列并将结果重新组合在一起:
arrays_zip
答案 1 :(得分:1)
对于没有array_zip
的Spark版本,我们也可以这样做:
df=spark.read.json("your_json_file.json")
df.show(truncate=False)
+---------------------+------------------------------------------+
|Price |Product |
+---------------------+------------------------------------------+
|[700, 250, 800, 1200]|[Desktop Computer, Tablet, iPhone, Laptop]|
+---------------------+------------------------------------------+
接下来,将struct
展开为array
:
df = df.withColumn('prc_array', F.array(F.expr('Price.*')))
df = df.withColumn('prod_array', F.array(F.expr('Product.*')))
然后在两个数组之间创建一个映射
df = df.withColumn('prc_prod_map', F.map_from_arrays('prc_array', 'prod_array'))
df.select('prc_array', 'prod_array', 'prc_prod_map').show(truncate=False)
+---------------------+------------------------------------------+-----------------------------------------------------------------------+
|prc_array |prod_array |prc_prod_map |
+---------------------+------------------------------------------+-----------------------------------------------------------------------+
|[700, 250, 800, 1200]|[Desktop Computer, Tablet, iPhone, Laptop]|[700 -> Desktop Computer, 250 -> Tablet, 800 -> iPhone, 1200 -> Laptop]|
+---------------------+------------------------------------------+-----------------------------------------------------------------------+
最后,在地图上应用explode
:
df = df.select(F.explode('prc_prod_map').alias('prc', 'prod'))
df.show(truncate=False)
+----+----------------+
|prc |prod |
+----+----------------+
|700 |Desktop Computer|
|250 |Tablet |
|800 |iPhone |
|1200|Laptop |
+----+----------------+
通过这种方式,我们避免了对两个表进行耗时的join
操作。
答案 2 :(得分:0)
如果您使用的是<2.4.4 然后,下面给出答案。 但是,对于Json的奇怪模式,我无法使其通用 在现实生活中的示例中,请创建格式更好的json
PYSPARK版本
>>> from pyspark.sql import Row
>>> json_df = spark.read.json("file.json") # File in current directory
>>> json_df.show(20,False) # We only have 1 Row with two StructType columns
+---------------------+------------------------------------------+
|Price |Product |
+---------------------+------------------------------------------+
|[700, 250, 800, 1200]|[Desktop Computer, Tablet, iPhone, Laptop]|
+---------------------+------------------------------------------+
>>> # We convert dataframe to Row and Zip two nested Rows Assuming there
#will be no gap in values
>>> spark.createDataFrame(zip(json_df.first().__getitem__(0), json_df.first().__getitem__(1)), schema=["Price", "Product"]).show(20,False)
+-----+----------------+
|Price|Product |
+-----+----------------+
|700 |Desktop Computer|
|250 |Tablet |
|800 |iPhone |
|1200 |Laptop |
+-----+----------------+
SCALA版本(没有首选案例类方法)
scala> val sparkDf = spark.read.json("file.json")
sparkDf: org.apache.spark.sql.DataFrame = [Price: struct<0: bigint, 1: bigint ... 2 more fields>, Product: struct<0: string, 1: string ... 2 more fields>]
scala> sparkDf.show(false)
+---------------------+------------------------------------------+
|Price |Product |
+---------------------+------------------------------------------+
|[700, 250, 800, 1200]|[Desktop Computer, Tablet, iPhone, Laptop]|
+---------------------+------------------------------------------+
scala> import spark.implicits._
import spark.implicits._
scala> (sparkDf.first.getStruct(0).toSeq.asInstanceOf[Seq[Long]], sparkDf.first.getStruct(1).toSeq.asInstanceOf[Seq[String]]).zipped.toList.toDF("Price","Product")
res6: org.apache.spark.sql.DataFrame = [Price: bigint, Product: string]
scala> // We do same thing but able to use methods of Row use Spark Implicits to get DataSet Directly
scala> (sparkDf.first.getStruct(0).toSeq.asInstanceOf[Seq[Long]], sparkDf.first.getStruct(1).toSeq.asInstanceOf[Seq[String]]).zipped.toList.toDF("Price","Product").show(false)
+-----+----------------+
|Price|Product |
+-----+----------------+
|700 |Desktop Computer|
|250 |Tablet |
|800 |iPhone |
|1200 |Laptop |
+-----+----------------+