我参加了APTOS 2019 kaggle比赛,并试图进行5次合奏,但是我在正确实施StratifiedKFold时遇到问题。
我已经尝试过在Fastai讨论中进行搜索,但没有找到任何解决方案。 我正在使用fastai库并有一个预先训练的模型。
def get_df():
base_image_dir = os.path.join('..', 'input/aptos2019-blindness-
detection/')
train_dir = os.path.join(base_image_dir,'train_images/')
df = pd.read_csv(os.path.join(base_image_dir, 'train.csv'))
df['path'] = df['id_code'].map(lambda x:
os.path.join(train_dir,'{}.png'.format(x)))
df = df.drop(columns=['id_code'])
df = df.sample(frac=1).reset_index(drop=True) #shuffle dataframe
test_df = pd.read_csv('../input/aptos2019-blindness-
detection/sample_submission.csv')
return df, test_df
df, test_df = get_df()
random_state = np.random.seed(2019)
skf = StratifiedKFold(n_splits=5, random_state=random_state, shuffle=True)
X = df['path']
y = df['diagnosis']
#getting the splits
for train_index, test_index in skf.split(X, y):
print('##')
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
train = X_train, y_train
test = X_test, y_test
train_list = [list(x) for x in train]
test_list = [list(x) for x in test]
data = (ImageList.from_df(df=df,path='./',cols='path')
.split_by_rand_pct(0.2)
.label_from_df(cols='diagnosis',label_cls=FloatList)
.transform(tfms,size=sz,resize_method=ResizeMethod.SQUISH,padding_mode='zeros')
.databunch(bs=bs,num_workers=4)
.normalize(imagenet_stats)
)
learn = Learner(data,
md_ef,
metrics = [qk],
model_dir="models").to_fp16()
learn.data.add_test(ImageList.from_df(test_df,
'../input/aptos2019-blindness-detection',
folder='test_images',
suffix='.png'))
我想使用从skf.split获得的折叠来训练我的模型,但是我不确定该怎么做。
答案 0 :(得分:2)
这可以通过两种方式完成。
data = (ImageList.from_df(df=df,path='./',cols='path')
.split_by_idxs(train_idx=train_index, valid_idx=test_index)
.label_from_df(cols='diagnosis',label_cls=FloatList)
.transform(tfms,size=sz,resize_method=ResizeMethod.SQUISH,padding_mode='zeros')
.databunch(bs=bs,num_workers=4)
.normalize(imagenet_stats)
)
il = ImageList.from_df(df=df,path='./',cols='path')
data = (il.split_by_list(train=il[train_index], valid=il[test_index])
.label_from_df(cols='diagnosis',label_cls=FloatList)
.transform(tfms,size=sz,resize_method=ResizeMethod.SQUISH,padding_mode='zeros')
.databunch(bs=bs,num_workers=4)
.normalize(imagenet_stats)
)
答案 1 :(得分:0)
这是一大段代码。希望这会有所帮助。
# creating a KFold object with 5 splits
folds = KFold(n_splits = 5, shuffle = True, random_state = 10)
# specify range of hyperparameters
# Set the parameters by cross-validation
hyper_params = [ {'gamma': [1e-2, 1e-3, 1e-4],
'C': [5,10]}]
# specify model
model = SVC(kernel="rbf")
# set up GridSearchCV()
model_cv = GridSearchCV(estimator = model,
param_grid = hyper_params,
scoring= 'accuracy',
cv = folds,
verbose = 1,
return_train_score=True)
# fit the model
model_cv.fit(X_train, y_train)