import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import cross_val_predict
x_train = dataset[0:700,:-1]
y_train = dataset[0:700,-1]
x_test = dataset[700:,:-1]
y_test = dataset[700:,-1]
def create_model():
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
model = KerasClassifier(build_fn=create_model, epochs=100, batch_size=64)
skf = StratifiedKFold(n_splits=3, shuffle=True, random_state=seed)
scores = cross_val_score(model, x_train, y_train, cv=skf)
predictions = cross_val_predict(model, x_test, y_test, cv=skf)
我想通过StratifiedKFold训练[x_train],[y_train] 并通过[x_test],[y_test]进行评估 我能怎么做? 我尝试了cross_val_predict。但我认为这不合适。
答案 0 :(得分:0)
要以分层方式在训练和测试之间进行划分,可以使用:
from sklearn.model_selection import train_test_split
dataset_train, dataset_test = train_test_split(dataset,
stratify=dataset[:,-1],
test_size=0.2)
#split both datasets into X,y
检查:
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
答案 1 :(得分:0)
skf = StratifiedKFold(n_splits=3, shuffle=True, random_state=seed)
accuracy=[]
for train in skf.split(x_train, y_train):
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
这个怎么样?这是工作,但我不知道这是正确的。