如何将这两个相同的数据帧组合到一个最佳排列各列的数据帧?

时间:2019-09-03 13:29:37

标签: python pandas dataframe data-analysis

我的目标是在最终数据帧上进行数据分析,这是学生结果的组合。

我尝试过的方法:在列中添加确切的名称,然后在每一行中重复主题名称。

程序代码:https://github.com/sharath-psh/VTU-results-extractor-and-analysis-/blob/master/jpres.ipynb

=====
student_name : student1_name
student_usn : 1BI18MCA01

dataframe of student 1 : 




       Code                          Subject name Internal External  Total     \
   0   17MCA41             ADVANCED JAVA PROGRAMMING       17       38     55   
   1  17MCA442      DATA WAREHOUSING AND DATA MINING       17       37     54   
   2   17MCA42              ADVANCED WEB PROGRAMMING       18       50     68   
3   17MCA43        SOFTWARE TESTING AND PRACTICES       15       34     49   
4  17MCA454   PRINCIPLES OF USER INTERFACE DESIGN       19       39     58   
5   17MCA46  ADVANCED JAVA PROGRAMMING LABORATORY       18       78     96   
6   17MCA47   ADVANCED WEB PROGRAMMING LABORATORY       19       78     97   
7   17MCA48           SOFTWARE TESTING LABORATORY       18       80     98   
8   17MCA49                               SEMINAR       50        0     50   
9   TOTAL :                               TOTAL :  TOTAL :  TOTAL :    625   

  Unnamed: 5  
0          P  
1          P  
2          P  
3          P  
4          P  
5          P  
6          P  
7          P  
8          P  
9        NaN  

====
student_name : student2_name
student_usn : 1BI18MCA02

dataframe of student 2:



       Code                          Subject name Internal External  Total  \
0   17MCA41             ADVANCED JAVA PROGRAMMING       11       37     48   
1   17MCA42              ADVANCED WEB PROGRAMMING       17       46     63   
2   17MCA43        SOFTWARE TESTING AND PRACTICES       14       36     50   
3  17MCA454   PRINCIPLES OF USER INTERFACE DESIGN       17       39     56   
4  17MCA444     CRYPTOGRAPHY AND NETWORK SECURITY       20       37     57   
5   17MCA46  ADVANCED JAVA PROGRAMMING LABORATORY       15       50     65   
6   17MCA47   ADVANCED WEB PROGRAMMING LABORATORY       20       62     82   
7   17MCA48           SOFTWARE TESTING LABORATORY       10       73     83   
8   17MCA49                               SEMINAR       45        0     45   
9   TOTAL :                               TOTAL :  TOTAL :  TOTAL :    549   

  Unnamed: 5  
0          P  
1          P  
2          P  
3          P  
4          P  
5          P  
6          P  
7          P  
8          P  
9        NaN

2 个答案:

答案 0 :(得分:1)

我认为您正在寻找keys中的pd.concat参数:

united_df = pd.concat([df1, df2], keys=['df1','df2'])

答案 1 :(得分:-1)

编辑: @Aryerez的p.concat评论使我意识到我的最初答案是错误的

df1 = df1.assign(student_name="student1_name").assign(student_usn="1BI18MCA01")
df2 = df2.assign(student_name="student2_name").assign(student_usn="1BI18MCA02")

df_merged = pd.concat([df1, df2])