我想用Java实现一个AVL树,这是我到目前为止所拥有的:
public class AVLNode {
private int size; /** The size of the tree. */
private int height; /** The height of the tree. */
private Object key;/** The key of the current node. */
private Object data;/** The data of the current node. */
private Comparator comp;/** The {@link Comparator} used by the node. */
/* All the nodes pointed by the current node.*/
private AVLNode left,right,parent,succ,pred;
/* Instantiates a new AVL node.
*
* @param key the key of the node
* @param data the data that the node should keep
* @param comp the comparator to be used in the tree
*/
public AVLNode(Object key, Object data, Comparator comp) {
this(key,data,comp,null);
}
/* Instantiates a new AVL node.
*
* @param key the key of the node
* @param data the data that the node should keep
* @param comp the comparator to be used in the tree
* @param parent the parent of the created node
*/
public AVLNode(Object key, Object data, Comparator comp, AVLNode parent) {
this.data = data;
this.key = key;
this.comp = comp;
this.parent = parent;
this.left = null;
this.right = null;
this.succ = null;
this.pred = null;
this.size = 1;
this.height = 0;
}
/* Adds the given data to the tree.
*
* @param key the key
* @param data the data
* @return the root of the tree after insertion and rotations
* @author <b>students</b>
*/
public AVLNode add(Object key,Object data) {
return null;
}
/* Removes a Node which key is equal
* (by {@link Comparator}) to the given argument.
*
* @param key the key
* @return the root after deletion and rotations
* @author <b>students</b>
*/
public AVLNode remove(Object key) {
return null;
}
我需要实现添加和删除功能。这是我到目前为止所做的,都应该在O(log(n))
时间运行。两者都应该返回整棵树的根:
/* Adds a new Node into the tree.
* @param key the key of the new node
* @param data the data of the new node
*/
public void add(Object key,Object data){
if (isEmpty()){
this.root = new AVLNode(key,data,comp);
}
else{
root = this.root.add(key,data);
}
}
/**
* Removes a node n from the tree where
* n.key is equal (by {@link Comparator}) to the given key.
*
* @param key the key
*/
public void remove(Object key){
if (isEmpty()){
return;
}
else
root = this.root.remove(key);
}
我需要有关添加和删除功能的帮助。
是否有任何指南来描述添加和删除操作的工作原理?要复制的库或我可以弄清楚AVL树如何工作的原因?
答案 0 :(得分:2)
您可以尝试链接here的AVL树。如果您有任何其他问题,请与我们联系。
链接发生故障时的来源
package com.jwetherell.algorithms.data_structures;
import java.util.ArrayList;
import java.util.List;
/**
* An AVL tree is a self-balancing binary search tree, and it was the first such
* data structure to be invented. In an AVL tree, the heights of the two child
* subtrees of any node differ by at most one. AVL trees are often compared with
* red-black trees because they support the same set of operations and because
* red-black trees also take O(log n) time for the basic operations. Because AVL
* trees are more rigidly balanced, they are faster than red-black trees for
* lookup intensive applications. However, red-black trees are faster for
* insertion and removal.
*
* http://en.wikipedia.org/wiki/AVL_tree
*
* @author Justin Wetherell <phishman3579@gmail.com>
*/
public class AVLTree<T extends Comparable<T>> extends BinarySearchTree<T> implements BinarySearchTree.INodeCreator<T> {
private enum Balance {
LEFT_LEFT, LEFT_RIGHT, RIGHT_LEFT, RIGHT_RIGHT
};
/**
* Default constructor.
*/
public AVLTree() {
this.creator = this;
}
/**
* Constructor with external Node creator.
*/
public AVLTree(INodeCreator<T> creator) {
super(creator);
}
/**
* {@inheritDoc}
*/
@Override
protected Node<T> addValue(T id) {
Node<T> nodeToReturn = super.addValue(id);
AVLNode<T> nodeAdded = (AVLNode<T>) nodeToReturn;
while (nodeAdded != null) {
nodeAdded.updateHeight();
balanceAfterInsert(nodeAdded);
nodeAdded = (AVLNode<T>) nodeAdded.parent;
}
return nodeToReturn;
}
/**
* Balance the tree according to the AVL post-insert algorithm.
*
* @param node
* Root of tree to balance.
*/
private void balanceAfterInsert(AVLNode<T> node) {
int balanceFactor = node.getBalanceFactor();
if (balanceFactor > 1 || balanceFactor < -1) {
AVLNode<T> parent = null;
AVLNode<T> child = null;
Balance balance = null;
if (balanceFactor < 0) {
parent = (AVLNode<T>) node.lesser;
balanceFactor = parent.getBalanceFactor();
if (balanceFactor < 0) {
child = (AVLNode<T>) parent.lesser;
balance = Balance.LEFT_LEFT;
} else {
child = (AVLNode<T>) parent.greater;
balance = Balance.LEFT_RIGHT;
}
} else {
parent = (AVLNode<T>) node.greater;
balanceFactor = parent.getBalanceFactor();
if (balanceFactor < 0) {
child = (AVLNode<T>) parent.lesser;
balance = Balance.RIGHT_LEFT;
} else {
child = (AVLNode<T>) parent.greater;
balance = Balance.RIGHT_RIGHT;
}
}
if (balance == Balance.LEFT_RIGHT) {
// Left-Right (Left rotation, right rotation)
rotateLeft(parent);
rotateRight(node);
} else if (balance == Balance.RIGHT_LEFT) {
// Right-Left (Right rotation, left rotation)
rotateRight(parent);
rotateLeft(node);
} else if (balance == Balance.LEFT_LEFT) {
// Left-Left (Right rotation)
rotateRight(node);
} else {
// Right-Right (Left rotation)
rotateLeft(node);
}
node.updateHeight(); // New child node
child.updateHeight(); // New child node
parent.updateHeight(); // New Parent node
}
}
/**
* {@inheritDoc}
*/
@Override
protected Node<T> removeValue(T value) {
// Find node to remove
Node<T> nodeToRemoved = this.getNode(value);
if (nodeToRemoved != null) {
// Find the replacement node
Node<T> replacementNode = this.getReplacementNode(nodeToRemoved);
// Find the parent of the replacement node to re-factor the
// height/balance of the tree
AVLNode<T> nodeToRefactor = null;
if (replacementNode != null)
nodeToRefactor = (AVLNode<T>) replacementNode.parent;
if (nodeToRefactor == null)
nodeToRefactor = (AVLNode<T>) nodeToRemoved.parent;
if (nodeToRefactor != null && nodeToRefactor.equals(nodeToRemoved))
nodeToRefactor = (AVLNode<T>) replacementNode;
// Replace the node
replaceNodeWithNode(nodeToRemoved, replacementNode);
// Re-balance the tree all the way up the tree
if (nodeToRefactor != null) {
while (nodeToRefactor != null) {
nodeToRefactor.updateHeight();
balanceAfterDelete(nodeToRefactor);
nodeToRefactor = (AVLNode<T>) nodeToRefactor.parent;
}
}
}
return nodeToRemoved;
}
/**
* Balance the tree according to the AVL post-delete algorithm.
*
* @param node
* Root of tree to balance.
*/
private void balanceAfterDelete(AVLNode<T> node) {
int balanceFactor = node.getBalanceFactor();
if (balanceFactor == -2 || balanceFactor == 2) {
if (balanceFactor == -2) {
AVLNode<T> ll = (AVLNode<T>) node.lesser.lesser;
int lesser = (ll != null) ? ll.height : 0;
AVLNode<T> lr = (AVLNode<T>) node.lesser.greater;
int greater = (lr != null) ? lr.height : 0;
if (lesser >= greater) {
rotateRight(node);
node.updateHeight();
if (node.parent != null)
((AVLNode<T>) node.parent).updateHeight();
} else {
rotateLeft(node.lesser);
rotateRight(node);
AVLNode<T> p = (AVLNode<T>) node.parent;
if (p.lesser != null)
((AVLNode<T>) p.lesser).updateHeight();
if (p.greater != null)
((AVLNode<T>) p.greater).updateHeight();
p.updateHeight();
}
} else if (balanceFactor == 2) {
AVLNode<T> rr = (AVLNode<T>) node.greater.greater;
int greater = (rr != null) ? rr.height : 0;
AVLNode<T> rl = (AVLNode<T>) node.greater.lesser;
int lesser = (rl != null) ? rl.height : 0;
if (greater >= lesser) {
rotateLeft(node);
node.updateHeight();
if (node.parent != null)
((AVLNode<T>) node.parent).updateHeight();
} else {
rotateRight(node.greater);
rotateLeft(node);
AVLNode<T> p = (AVLNode<T>) node.parent;
if (p.lesser != null)
((AVLNode<T>) p.lesser).updateHeight();
if (p.greater != null)
((AVLNode<T>) p.greater).updateHeight();
p.updateHeight();
}
}
}
}
/**
* {@inheritDoc}
*/
@Override
protected boolean validateNode(Node<T> node) {
boolean bst = super.validateNode(node);
if (!bst)
return false;
AVLNode<T> avlNode = (AVLNode<T>) node;
int balanceFactor = avlNode.getBalanceFactor();
if (balanceFactor > 1 || balanceFactor < -1) {
return false;
}
if (avlNode.isLeaf()) {
if (avlNode.height != 1)
return false;
} else {
AVLNode<T> avlNodeLesser = (AVLNode<T>) avlNode.lesser;
int lesserHeight = 1;
if (avlNodeLesser != null)
lesserHeight = avlNodeLesser.height;
AVLNode<T> avlNodeGreater = (AVLNode<T>) avlNode.greater;
int greaterHeight = 1;
if (avlNodeGreater != null)
greaterHeight = avlNodeGreater.height;
if (avlNode.height == (lesserHeight + 1) || avlNode.height == (greaterHeight + 1)) {
return true;
} else {
return false;
}
}
return true;
}
/**
* {@inheritDoc}
*/
@Override
public String toString() {
return AVLTreePrinter.getString(this);
}
/**
* {@inheritDoc}
*/
@Override
public Node<T> createNewNode(Node<T> parent, T id) {
return (new AVLNode<T>(parent, id));
}
protected static class AVLNode<T extends Comparable<T>> extends Node<T> {
protected int height = 1;
/**
* Constructor for an AVL node
*
* @param parent
* Parent of the node in the tree, can be NULL.
* @param value
* Value of the node in the tree.
*/
protected AVLNode(Node<T> parent, T value) {
super(parent, value);
}
/**
* Determines is this node is a leaf (has no children).
*
* @return True if this node is a leaf.
*/
protected boolean isLeaf() {
return ((lesser == null) && (greater == null));
}
/**
* Updates the height of this node based on it's children.
*/
protected void updateHeight() {
int lesserHeight = 0;
int greaterHeight = 0;
if (lesser != null) {
AVLNode<T> lesserAVLNode = (AVLNode<T>) lesser;
lesserHeight = lesserAVLNode.height;
}
if (greater != null) {
AVLNode<T> greaterAVLNode = (AVLNode<T>) greater;
greaterHeight = greaterAVLNode.height;
}
if (lesserHeight > greaterHeight) {
height = lesserHeight + 1;
} else {
height = greaterHeight + 1;
}
}
/**
* Get the balance factor for this node.
*
* @return An integer representing the balance factor for this node. It
* will be negative if the lesser branch is longer than the
* greater branch.
*/
protected int getBalanceFactor() {
int lesserHeight = 0;
int greaterHeight = 0;
if (lesser != null) {
AVLNode<T> lesserAVLNode = (AVLNode<T>) lesser;
lesserHeight = lesserAVLNode.height;
}
if (greater != null) {
AVLNode<T> greaterAVLNode = (AVLNode<T>) greater;
greaterHeight = greaterAVLNode.height;
}
return greaterHeight - lesserHeight;
}
/**
* {@inheritDoc}
*/
@Override
public String toString() {
return "value=" + id + " height=" + height + " parent=" + ((parent != null) ? parent.id : "NULL")
+ " lesser=" + ((lesser != null) ? lesser.id : "NULL") + " greater="
+ ((greater != null) ? greater.id : "NULL");
}
}
protected static class AVLTreePrinter {
public static <T extends Comparable<T>> String getString(AVLTree<T> tree) {
if (tree.root == null)
return "Tree has no nodes.";
return getString((AVLNode<T>) tree.root, "", true);
}
public static <T extends Comparable<T>> String getString(AVLNode<T> node) {
if (node == null)
return "Sub-tree has no nodes.";
return getString(node, "", true);
}
private static <T extends Comparable<T>> String getString(AVLNode<T> node, String prefix, boolean isTail) {
StringBuilder builder = new StringBuilder();
builder.append(prefix + (isTail ? "└── " : "├── ") + "(" + node.height + ") " + node.id + "\n");
List<Node<T>> children = null;
if (node.lesser != null || node.greater != null) {
children = new ArrayList<Node<T>>(2);
if (node.lesser != null)
children.add(node.lesser);
if (node.greater != null)
children.add(node.greater);
}
if (children != null) {
for (int i = 0; i < children.size() - 1; i++) {
builder.append(getString((AVLNode<T>) children.get(i), prefix + (isTail ? " " : "│ "), false));
}
if (children.size() >= 1) {
builder.append(getString((AVLNode<T>) children.get(children.size() - 1), prefix
+ (isTail ? " " : "│ "), true));
}
}
return builder.toString();
}
}
}
答案 1 :(得分:0)
嗯,这个java代码可以帮助你,它扩展了Michael Goodrich的BST:
要查看完整的数据结构,请转到here
AVLTree.java (链接不再可用)
import java.util.Comparator;
/**
* AVLTree class - implements an AVL Tree by extending a binary
* search tree.
*
* @author Michael Goodrich, Roberto Tamassia, Eric Zamore
*/
//begin#fragment AVLTree
public class AVLTree extends BinarySearchTree implements Dictionary {
public AVLTree(Comparator c) { super(c); }
public AVLTree() { super(); }
/** Nested class for the nodes of an AVL tree. */
protected static class AVLNode extends BTNode {
protected int height; // we add a height field to a BTNode
AVLNode() {/* default constructor */}
/** Preferred constructor */
AVLNode(Object element, BTPosition parent,
BTPosition left, BTPosition right) {
super(element, parent, left, right);
height = 0;
if (left != null)
height = Math.max(height, 1 + ((AVLNode) left).getHeight());
if (right != null)
height = Math.max(height, 1 + ((AVLNode) right).getHeight());
} // we assume that the parent will revise its height if needed
public void setHeight(int h) { height = h; }
public int getHeight() { return height; }
}
/** Creates a new binary search tree node (overrides super's version). */
protected BTPosition createNode(Object element, BTPosition parent,
BTPosition left, BTPosition right) {
return new AVLNode(element,parent,left,right); // now use AVL nodes
}
/** Returns the height of a node (call back to an AVLNode). */
protected int height(Position p) {
return ((AVLNode) p).getHeight();
}
/** Sets the height of an internal node (call back to an AVLNode). */
protected void setHeight(Position p) { // called only if p is internal
((AVLNode) p).setHeight(1+Math.max(height(left(p)), height(right(p))));
}
/** Returns whether a node has balance factor between -1 and 1. */
protected boolean isBalanced(Position p) {
int bf = height(left(p)) - height(right(p));
return ((-1 <= bf) && (bf <= 1));
}
//end#fragment AVLTree
//begin#fragment AVLTree2
/** Returns a child of p with height no smaller than that of the other child */
//end#fragment AVLTree2
/**
* Return a child of p with height no smaller than that of the
* other child.
*/
//begin#fragment AVLTree2
protected Position tallerChild(Position p) {
if (height(left(p)) > height(right(p))) return left(p);
else if (height(left(p)) < height(right(p))) return right(p);
// equal height children - break tie using parent's type
if (isRoot(p)) return left(p);
if (p == left(parent(p))) return left(p);
else return right(p);
}
/**
* Rebalance method called by insert and remove. Traverses the path from
* zPos to the root. For each node encountered, we recompute its height
* and perform a trinode restructuring if it's unbalanced.
*/
protected void rebalance(Position zPos) {
if(isInternal(zPos))
setHeight(zPos);
while (!isRoot(zPos)) { // traverse up the tree towards the root
zPos = parent(zPos);
setHeight(zPos);
if (!isBalanced(zPos)) {
// perform a trinode restructuring at zPos's tallest grandchild
Position xPos = tallerChild(tallerChild(zPos));
zPos = restructure(xPos); // tri-node restructure (from parent class)
setHeight(left(zPos)); // recompute heights
setHeight(right(zPos));
setHeight(zPos);
}
}
}
// overridden methods of the dictionary ADT
//end#fragment AVLTree2
/**
* Inserts an item into the dictionary and returns the newly created
* entry.
*/
//begin#fragment AVLTree2
public Entry insert(Object k, Object v) throws InvalidKeyException {
Entry toReturn = super.insert(k, v); // calls our new createNode method
rebalance(actionPos); // rebalance up from the insertion position
return toReturn;
}
//end#fragment AVLTree2
/** Removes and returns an entry from the dictionary. */
//begin#fragment AVLTree2
public Entry remove(Entry ent) throws InvalidEntryException {
Entry toReturn = super.remove(ent);
if (toReturn != null) // we actually removed something
rebalance(actionPos); // rebalance up the tree
return toReturn;
}
} // end of AVLTree class
//end#fragment AVLTree2
<强> BTNode.java 强>
public class BTNode implements BTPosition {
private Object element; // element stored at this node
private BTPosition left, right, parent; // adjacent nodes
//end#fragment BTNode
/** Default constructor */
public BTNode() { }
//begin#fragment BTNode
/** Main constructor */
public BTNode(Object element, BTPosition parent,
BTPosition left, BTPosition right) {
setElement(element);
setParent(parent);
setLeft(left);
setRight(right);
}
public Object element() { return element; }
public void setElement(Object o) {
element=o;
}
public BTPosition getLeft() { return left; }
public void setLeft(BTPosition v) {
left=v;
}
public BTPosition getRight() { return right; }
public void setRight(BTPosition v) {
right=v;
}
public BTPosition getParent() { return parent; }
public void setParent(BTPosition v) {
parent=v;
}
}
<强> BTPosition.java 强>
public interface BTPosition extends Position { // inherits element()
public void setElement(Object o);
public BTPosition getLeft();
public void setLeft(BTPosition v);
public BTPosition getRight();
public void setRight(BTPosition v);
public BTPosition getParent();
public void setParent(BTPosition v);
}
答案 2 :(得分:0)
另一种AVL的Java实现,包括插入,搜索和删除。
当您执行有序遍历时,它还会打印出每个节点的父名称和高度,这样可以很容易地看到操作的效果。
开箱即用的可运行代码对CS练习作业特别有用: - )
public class AVLTree {
private static class Node {
Node left, right;
Node parent;
int value ;
int height = 0;
public Node(int data, Node parent) {
this.value = data;
this.parent = parent;
}
@Override
public String toString() {
return value + " height " + height + " parent " + (parent == null ?
"NULL" : parent.value) + " | ";
}
void setLeftChild(Node child) {
if (child != null) {
child.parent = this;
}
this.left = child;
}
void setRightChild(Node child) {
if (child != null) {
child.parent = this;
}
this.right = child;
}
}
private Node root = null;
public void insert(int data) {
insert(root, data);
}
private int height(Node node) {
return node == null ? -1 : node.height;
}
private void insert(Node node, int value) {
if (root == null) {
root = new Node(value, null);
return;
}
if (value < node.value) {
if (node.left != null) {
insert(node.left, value);
} else {
node.left = new Node(value, node);
}
if (height(node.left) - height(node.right) == 2) { //left heavier
if (value < node.left.value) {
rotateRight(node);
} else {
rotateLeftThenRight(node);
}
}
} else if (value > node.value) {
if (node.right != null) {
insert(node.right, value);
} else {
node.right = new Node(value, node);
}
if (height(node.right) - height(node.left) == 2) { //right heavier
if (value > node.right.value)
rotateLeft(node);
else {
rotateRightThenLeft(node);
}
}
}
reHeight(node);
}
private void rotateRight(Node pivot) {
Node parent = pivot.parent;
Node leftChild = pivot.left;
Node rightChildOfLeftChild = leftChild.right;
pivot.setLeftChild(rightChildOfLeftChild);
leftChild.setRightChild(pivot);
if (parent == null) {
this.root = leftChild;
leftChild.parent = null;
return;
}
if (parent.left == pivot) {
parent.setLeftChild(leftChild);
} else {
parent.setRightChild(leftChild);
}
reHeight(pivot);
reHeight(leftChild);
}
private void rotateLeft(Node pivot) {
Node parent = pivot.parent;
Node rightChild = pivot.right;
Node leftChildOfRightChild = rightChild.left;
pivot.setRightChild(leftChildOfRightChild);
rightChild.setLeftChild(pivot);
if (parent == null) {
this.root = rightChild;
rightChild.parent = null;
return;
}
if (parent.left == pivot) {
parent.setLeftChild(rightChild);
} else {
parent.setRightChild(rightChild);
}
reHeight(pivot);
reHeight(rightChild);
}
private void reHeight(Node node) {
node.height = Math.max(height(node.left), height(node.right)) + 1;
}
private void rotateLeftThenRight(Node node) {
rotateLeft(node.left);
rotateRight(node);
}
private void rotateRightThenLeft(Node node) {
rotateRight(node.right);
rotateLeft(node);
}
public boolean delete(int key) {
Node target = search(key);
if (target == null) return false;
target = deleteNode(target);
balanceTree(target.parent);
return true;
}
private Node deleteNode(Node target) {
if (isLeaf(target)) { //leaf
if (isLeftChild(target)) {
target.parent.left = null;
} else {
target.parent.right = null;
}
} else if (target.left == null ^ target.right == null) { //exact 1 child
Node nonNullChild = target.left == null ? target.right : target.left;
if (isLeftChild(target)) {
target.parent.setLeftChild(nonNullChild);
} else {
target.parent.setRightChild(nonNullChild);
}
} else {//2 children
Node immediatePredInOrder = immediatePredInOrder(target);
target.value = immediatePredInOrder.value;
target = deleteNode(immediatePredInOrder);
}
reHeight(target.parent);
return target;
}
private Node immediatePredInOrder(Node node) {
Node current = node.left;
while (current.right != null) {
current = current.right;
}
return current;
}
private boolean isLeftChild(Node child) {
return (child.parent.left == child);
}
private boolean isLeaf(Node node) {
return node.left == null && node.right == null;
}
private int calDifference(Node node) {
int rightHeight = height(node.right);
int leftHeight = height(node.left);
return rightHeight - leftHeight;
}
private void balanceTree(Node node) {
int difference = calDifference(node);
Node parent = node.parent;
if (difference == -2) {
if (height(node.left.left) >= height(node.left.right)) {
rotateRight(node);
} else {
rotateLeftThenRight(node);
}
} else if (difference == 2) {
if (height(node.right.right) >= height(node.right.left)) {
rotateLeft(node);
} else {
rotateRightThenLeft(node);
}
}
if (parent != null) {
balanceTree(parent);
}
reHeight(node);
}
public Node search(int key) {
return binarySearch(root, key);
}
private Node binarySearch(Node node, int key) {
if (node == null) return null;
if (key == node.value) {
return node;
}
if (key < node.value && node.left != null) {
return binarySearch(node.left, key);
}
if (key > node.value && node.right != null) {
return binarySearch(node.right, key);
}
return null;
}
public void traverseInOrder() {
System.out.println("ROOT " + root.toString());
inorder(root);
System.out.println();
}
private void inorder(Node node) {
if (node != null) {
inorder(node.left);
System.out.print(node.toString());
inorder(node.right);
}
}
public static void main(String[] args) {
AVLTree avl = new AVLTree();
avl.insert(1);
avl.traverseInOrder();
avl.insert(2);
avl.traverseInOrder();
avl.insert(3);
avl.traverseInOrder();
avl.insert(4);
avl.traverseInOrder();
avl.delete(1);
avl.traverseInOrder();
avl.insert(5);
avl.traverseInOrder();
avl.insert(6);
avl.traverseInOrder();
avl.delete(3);
avl.traverseInOrder();
avl.delete(5);
avl.traverseInOrder();
}
}
答案 3 :(得分:0)
我有一个video playlist解释了我推荐的AVL树是如何工作的。
这是一个AVL树的工作实现,有很好的文档记录。添加/删除操作就像常规二进制搜索树一样,需要随时更新平衡因子值。
请注意,这是一个递归实现,它更易于理解,但可能比迭代对应的更慢。
此数据结构取自我的github repo
/**
* This file contains an implementation of an AVL tree. An AVL tree
* is a special type of binary tree which self balances itself to keep
* operations logarithmic.
*
* @author William Fiset, william.alexandre.fiset@gmail.com
**/
public class AVLTreeRecursive <T extends Comparable<T>> implements Iterable<T> {
class Node {
// 'bf' is short for Balance Factor
int bf;
// The value/data contained within the node.
T value;
// The height of this node in the tree.
int height;
// The left and the right children of this node.
Node left, right;
public Node(T value) {
this.value = value;
}
}
// The root node of the AVL tree.
Node root;
// Tracks the number of nodes inside the tree.
private int nodeCount = 0;
// The height of a rooted tree is the number of edges between the tree's
// root and its furthest leaf. This means that a tree containing a single
// node has a height of 0.
public int height() {
if (root == null) return 0;
return root.height;
}
// Returns the number of nodes in the tree.
public int size() {
return nodeCount;
}
// Returns whether or not the tree is empty.
public boolean isEmpty() {
return size() == 0;
}
// Return true/false depending on whether a value exists in the tree.
public boolean contains(T value) {
return contains(root, value);
}
// Recursive contains helper method.
private boolean contains(Node node, T value) {
if (node == null) return false;
// Compare current value to the value in the node.
int cmp = value.compareTo(node.value);
// Dig into left subtree.
if (cmp < 0) return contains(node.left, value);
// Dig into right subtree.
if (cmp > 0) return contains(node.right, value);
// Found value in tree.
return true;
}
// Insert/add a value to the AVL tree. The value must not be null, O(log(n))
public boolean insert(T value) {
if (value == null) return false;
if (!contains(root, value)) {
root = insert(root, value);
nodeCount++;
return true;
}
return false;
}
// Inserts a value inside the AVL tree.
private Node insert(Node node, T value) {
// Base case.
if (node == null) return new Node(value);
// Compare current value to the value in the node.
int cmp = value.compareTo(node.value);
// Insert node in left subtree.
if (cmp < 0) {
node.left = insert(node.left, value);;
// Insert node in right subtree.
} else {
node.right = insert(node.right, value);
}
// Update balance factor and height values.
update(node);
// Re-balance tree.
return balance(node);
}
// Update a node's height and balance factor.
private void update(Node node) {
int leftNodeHeight = (node.left == null) ? -1 : node.left.height;
int rightNodeHeight = (node.right == null) ? -1 : node.right.height;
// Update this node's height.
node.height = 1 + Math.max(leftNodeHeight, rightNodeHeight);
// Update balance factor.
node.bf = rightNodeHeight - leftNodeHeight;
}
// Re-balance a node if its balance factor is +2 or -2.
private Node balance(Node node) {
// Left heavy subtree.
if (node.bf == -2) {
// Left-Left case.
if (node.left.bf <= 0) {
return leftLeftCase(node);
// Left-Right case.
} else {
return leftRightCase(node);
}
// Right heavy subtree needs balancing.
} else if (node.bf == +2) {
// Right-Right case.
if (node.right.bf >= 0) {
return rightRightCase(node);
// Right-Left case.
} else {
return rightLeftCase(node);
}
}
// Node either has a balance factor of 0, +1 or -1 which is fine.
return node;
}
private Node leftLeftCase(Node node) {
return rightRotation(node);
}
private Node leftRightCase(Node node) {
node.left = leftRotation(node.left);
return leftLeftCase(node);
}
private Node rightRightCase(Node node) {
return leftRotation(node);
}
private Node rightLeftCase(Node node) {
node.right = rightRotation(node.right);
return rightRightCase(node);
}
private Node leftRotation(Node node) {
Node newParent = node.right;
node.right = newParent.left;
newParent.left = node;
update(node);
update(newParent);
return newParent;
}
private Node rightRotation(Node node) {
Node newParent = node.left;
node.left = newParent.right;
newParent.right = node;
update(node);
update(newParent);
return newParent;
}
// Remove a value from this binary tree if it exists, O(log(n))
public boolean remove(T elem) {
if (elem == null) return false;
if (contains(root, elem)) {
root = remove(root, elem);
nodeCount--;
return true;
}
return false;
}
// Removes a value from the AVL tree.
private Node remove(Node node, T elem) {
if (node == null) return null;
int cmp = elem.compareTo(node.value);
// Dig into left subtree, the value we're looking
// for is smaller than the current value.
if (cmp < 0) {
node.left = remove(node.left, elem);
// Dig into right subtree, the value we're looking
// for is greater than the current value.
} else if (cmp > 0) {
node.right = remove(node.right, elem);
// Found the node we wish to remove.
} else {
// This is the case with only a right subtree or no subtree at all.
// In this situation just swap the node we wish to remove
// with its right child.
if (node.left == null) {
return node.right;
// This is the case with only a left subtree or
// no subtree at all. In this situation just
// swap the node we wish to remove with its left child.
} else if (node.right == null) {
return node.left;
// When removing a node from a binary tree with two links the
// successor of the node being removed can either be the largest
// value in the left subtree or the smallest value in the right
// subtree. As a heuristic, I will remove from the subtree with
// the most nodes in hopes that this may help with balancing.
} else {
// Choose to remove from left subtree
if (node.left.height > node.right.height) {
// Swap the value of the successor into the node.
T successorValue = findMax(node.left);
node.value = successorValue;
// Find the largest node in the left subtree.
node.left = remove(node.left, successorValue);
} else {
// Swap the value of the successor into the node.
T successorValue = findMin(node.right);
node.value = successorValue;
// Go into the right subtree and remove the leftmost node we
// found and swapped data with. This prevents us from having
// two nodes in our tree with the same value.
node.right = remove(node.right, successorValue);
}
}
}
// Update balance factor and height values.
update(node);
// Re-balance tree.
return balance(node);
}
// Helper method to find the leftmost node (which has the smallest value)
private T findMin(Node node) {
while(node.left != null)
node = node.left;
return node.value;
}
// Helper method to find the rightmost node (which has the largest value)
private T findMax(Node node) {
while(node.right != null)
node = node.right;
return node.value;
}
// Returns as iterator to traverse the tree in order.
public java.util.Iterator<T> iterator () {
final int expectedNodeCount = nodeCount;
final java.util.Stack<Node> stack = new java.util.Stack<>();
stack.push(root);
return new java.util.Iterator<T> () {
Node trav = root;
@Override
public boolean hasNext() {
if (expectedNodeCount != nodeCount) throw new java.util.ConcurrentModificationException();
return root != null && !stack.isEmpty();
}
@Override
public T next () {
if (expectedNodeCount != nodeCount) throw new java.util.ConcurrentModificationException();
while(trav != null && trav.left != null) {
stack.push(trav.left);
trav = trav.left;
}
Node node = stack.pop();
if (node.right != null) {
stack.push(node.right);
trav = node.right;
}
return node.value;
}
@Override
public void remove() {
throw new UnsupportedOperationException();
}
};
}
// Make sure all left child nodes are smaller in value than their parent and
// make sure all right child nodes are greater in value than their parent.
// (Used only for testing)
boolean validateBstInvarient(Node node) {
if (node == null) return true;
T val = node.value;
boolean isValid = true;
if (node.left != null) isValid = isValid && node.left.value.compareTo(val) < 0;
if (node.right != null) isValid = isValid && node.right.value.compareTo(val) > 0;
return isValid && validateBstInvarient(node.left) && validateBstInvarient(node.right);
}
// Example usage of AVL tree.
public static void main(String[] args) {
AVLTreeRecursive<Integer> tree = new AVLTreeRecursive<>();
tree.insert(7);
tree.insert(16);
tree.insert(-2);
tree.insert(10);
tree.insert(12);
// Prints: -2 7 10 12 16
for(Integer value : tree) System.out.print(value + " ");
System.out.println();
tree.remove(12);
tree.remove(-5);
tree.remove(10);
// Prints: -2 7 16
for(Integer value : tree) System.out.print(value + " ");
System.out.println();
System.out.println(tree.contains(10)); // false
System.out.println(tree.contains(16)); // true
}
}