所以我使用参数化列表实现了二进制搜索树,即
List<Node> tree = new List<>();
树很好用。节点本身对其父节点或子节点一无所知。这是因为我根据索引计算位置,例如
If i is the index of some None N then:
N's left child is in tree[i*2]
N's right child is in tree[(i*2)+1]
这个二叉树工作正常。但是现在我想把AVL树的功能放到它上面。我暂时陷入困境,因为我不知道如何在List上进行旋转。轮换时,我如何移动新根的子节点?事实是他们不得不转移指数吗?另外在List上执行此操作会给我一个问题,即每次添加节点时显示树都需要循环遍历List。这不会发生在O(logn)中,不再破坏AVL树的整个点。
我在C#中这样做。我只是想知道如何使用List或任何基于数组的数据结构有效地制作这个AVL树,该数据结构是可索引的而不是链接列表。这很重要。非常感谢一些代码来说明。
答案 0 :(得分:2)
在数组/列表中表示树的方式对于堆数据结构来说很常见,但它几乎不适用于任何其他类型的树。特别是,你不能(有效地)为AVL树做这件事,因为每次轮换都需要太多的复制。
答案 1 :(得分:0)
对于我们没有malloc可用的嵌入式应用程序,我需要这个。在我尝试之前没有做任何类型的数据结构算法实现,如果可以的话。在编写代码时,我意识到我必须移动很多东西。我搜索了一个补救措施,并得到了这篇文章。
感谢Chris的回复,我不会再花时间了。我会找到其他方法来实现我需要的东西。
答案 2 :(得分:0)
我相信我找到了答案,Trick是在列表中上下移动子树,以便在旋转时不会覆盖有效节点。
void shiftUp(int indx, int towards) {
if (indx >= size || nodes[indx].key == NULL) {
return;
}
nodes[towards] = nodes[indx];
nodes[indx].key = NULL;
shiftUp(lChild(indx), lChild(towards));
shiftUp(rChild(indx), rChild(towards));
}
void shiftDown(int indx, int towards) {
if (indx >= size || nodes[indx].key == NULL) {
return;
}
// increase size so we can finish shifting down
while (towards >= size) { // while in the case we don't make it big enough
enlarge();
}
shiftDown(lChild(indx), lChild(towards));
shiftDown(rChild(indx), rChild(towards));
nodes[towards] = nodes[indx];
nodes[indx].key = NULL;
}
正如您所看到的,这是通过递归地探索每个子树直到NULL(在此定义为-1)节点然后向上或向下逐个复制每个元素来完成的。
通过这个我们可以定义根据这个Wikipedia Tree_Rebalancing.gif
命名的4种类型的旋转void rotateRight(int rootIndx) {
int pivotIndx = lChild(rootIndx);
// shift the roots right subtree down to the right
shiftDown(rChild(rootIndx), rChild(rChild(rootIndx)));
nodes[rChild(rootIndx)] = nodes[rootIndx]; // move root too
// move the pivots right child to the roots right child's left child
shiftDown(rChild(pivotIndx), lChild(rChild(rootIndx)));
// move the pivot up to the root
shiftUp(pivotIndx, rootIndx);
// adjust balances of nodes in their new positions
nodes[rootIndx].balance--; // old pivot
nodes[rChild(rootIndx)].balance = (short)(-nodes[rootIndx].balance); // old root
}
void rotateLeft(int rootIndx) {
int pivotIndx = rChild(rootIndx);
// Shift the roots left subtree down to the left
shiftDown(lChild(rootIndx), lChild(lChild(rootIndx)));
nodes[lChild(rootIndx)] = nodes[rootIndx]; // move root too
// move the pivots left child to the roots left child's right child
shiftDown(lChild(pivotIndx), rChild(lChild(rootIndx)));
// move the pivot up to the root
shiftUp(pivotIndx, rootIndx);
// adjust balances of nodes in their new positions
nodes[rootIndx].balance++; // old pivot
nodes[lChild(rootIndx)].balance = (short)(-nodes[rootIndx].balance); // old root
}
// Where rootIndx is the highest point in the rotating tree
// not the root of the first Left rotation
void rotateLeftRight(int rootIndx) {
int newRootIndx = rChild(lChild(rootIndx));
// shift the root's right subtree down to the right
shiftDown(rChild(rootIndx), rChild(rChild(rootIndx)));
nodes[rChild(rootIndx)] = nodes[rootIndx];
// move the new roots right child to the roots right child's left child
shiftUp(rChild(newRootIndx), lChild(rChild(rootIndx)));
// move the new root node into the root node
nodes[rootIndx] = nodes[newRootIndx];
nodes[newRootIndx].key = NULL;
// shift up to where the new root was, it's left child
shiftUp(lChild(newRootIndx), newRootIndx);
// adjust balances of nodes in their new positions
if (nodes[rootIndx].balance == -1) { // new root
nodes[rChild(rootIndx)].balance = 0; // old root
nodes[lChild(rootIndx)].balance = 1; // left from old root
} else if (nodes[rootIndx].balance == 0) {
nodes[rChild(rootIndx)].balance = 0;
nodes[lChild(rootIndx)].balance = 0;
} else {
nodes[rChild(rootIndx)].balance = -1;
nodes[lChild(rootIndx)].balance = 0;
}
nodes[rootIndx].balance = 0;
}
// Where rootIndx is the highest point in the rotating tree
// not the root of the first Left rotation
void rotateRightLeft(int rootIndx) {
int newRootIndx = lChild(rChild(rootIndx));
// shift the root's left subtree down to the left
shiftDown(lChild(rootIndx), lChild(lChild(rootIndx)));
nodes[lChild(rootIndx)] = nodes[rootIndx];
// move the new roots left child to the roots left child's right child
shiftUp(lChild(newRootIndx), rChild(lChild(rootIndx)));
// move the new root node into the root node
nodes[rootIndx] = nodes[newRootIndx];
nodes[newRootIndx].key = NULL;
// shift up to where the new root was it's right child
shiftUp(rChild(newRootIndx), newRootIndx);
// adjust balances of nodes in their new positions
if (nodes[rootIndx].balance == 1) { // new root
nodes[lChild(rootIndx)].balance = 0; // old root
nodes[rChild(rootIndx)].balance = -1; // right from old root
} else if (nodes[rootIndx].balance == 0) {
nodes[lChild(rootIndx)].balance = 0;
nodes[rChild(rootIndx)].balance = 0;
} else {
nodes[lChild(rootIndx)].balance = 1;
nodes[rChild(rootIndx)].balance = 0;
}
nodes[rootIndx].balance = 0;
}
请注意,如果移位会覆盖节点,我们只需复制单个节点
至于效率存储每个节点中的平衡是必须的,因为在每个节点上获得高度差异将是非常昂贵的
int getHeight(int indx) {
if (indx >= size || nodes[indx].key == NULL) {
return 0;
} else {
return max(getHeight(lChild(indx)) + 1, getHeight(rChild(indx)) + 1);
}
}
虽然这样做需要我们在修改列表时更新受影响节点的余额,但这可以通过仅更新严格必要的案例来有效地进行。 删除此调整是
// requires non null node index and a balance factor baised off whitch child of it's parent it is or 0
private void deleteNode(int i, short balance) {
int lChildIndx = lChild(i);
int rChildIndx = rChild(i);
count--;
if (nodes[lChildIndx].key == NULL) {
if (nodes[rChildIndx].key == NULL) {
// root or leaf
nodes[i].key = NULL;
if (i != 0) {
deleteBalance(parent(i), balance);
}
} else {
shiftUp(rChildIndx, i);
deleteBalance(i, 0);
}
} else if (nodes[rChildIndx].key == NULL) {
shiftUp(lChildIndx, i);
deleteBalance(i, 0);
} else {
int successorIndx = rChildIndx;
// replace node with smallest child in the right subtree
if (nodes[lChild(successorIndx)].key == NULL) {
nodes[successorIndx].balance = nodes[i].balance;
shiftUp(successorIndx, i);
deleteBalance(successorIndx, 1);
} else {
int tempLeft;
while ((tempLeft = lChild(successorIndx)) != NULL) {
successorIndx = tempLeft;
}
nodes[successorIndx].balance = nodes[i].balance;
nodes[i] = nodes[successorIndx];
shiftUp(rChild(successorIndx), successorIndx);
deleteBalance(parent(successorIndx), -1);
}
}
}
类似于插入,这是
void insertBalance(int pviotIndx, short balance) {
while (pviotIndx != NULL) {
balance = (nodes[pviotIndx].balance += balance);
if (balance == 0) {
return;
} else if (balance == 2) {
if (nodes[lChild(pviotIndx)].balance == 1) {
rotateRight(pviotIndx);
} else {
rotateLeftRight(pviotIndx);
}
return;
} else if (balance == -2) {
if (nodes[rChild(pviotIndx)].balance == -1) {
rotateLeft(pviotIndx);
} else {
rotateRightLeft(pviotIndx);
}
return;
}
int p = parent(pviotIndx);
if (p != NULL) {
balance = lChild(p) == pviotIndx ? (short)1 : (short)-1;
}
pviotIndx = p;
}
}
正如你所看到的那样,只使用普通的“节点”数组,因为我从给定gitHub array-avl-tree的c代码中翻译了它,并从(我将在评论中发布的链接)进行了优化和平衡,但是它会工作得很好类似于列表
最后,我对AVL树或最佳实现知之甚少,所以我并不认为这是无bug或最有效但至少已经通过我的初步测试