必须在Spark / Scala中处理行,请帮助。
我有以下数据框DF1:
ACC_SECURITY|ACCOUNT_NO|COSTCENTER| BU| MPU|LONG_IND|SHORT_IND|SECURITY_ID|QUANTITY|POS_NEG_QUANTITY|PROCESSED|ALLOC_QUANTITY|NET_QUANTITY|
+-------------+----------+----------+------+------+--------+---------+-----------+--------+----------------+---------+--------------+------------+
|3FA34789290X2| 3FA34789| 0800TS|BOXXBU|BOXXMP| 0101| 5279| 290X2| 18063| P| | 0| 0|
|3FA34782290X2| 3FA34782| 0800TS|BOXXBU|BOXXMP| 0102| 5322| 290X2| -863| N| | 0| 0|
|3FA34789290X2| 3FA34789| 0800TS|BOXXBU|BOXXMP| 0101| 5279| 290X2| -108926| N| | 0| 0|
|9211530135G71| 92115301| 08036C|BOXXBU|BOXXMP| 0154| 8380| 35G71| 8003| P| | 0| 0|
|9211530235G71| 92115302| 08036C|BOXXBU|BOXXMP| 0144| 8382| 35G71| -2883| N| | 0| 0|
数据框DF2:
|ENTITY|MATRIX|PRIORITY|LONG_CODE|SHORT_CODE|
+------+------+--------+---------+----------+
300| 00| 16600| 0101| 5322|
300| 00| 19900| 0101| 5279|
300| 00| 298300| 0102| 5279|
300| 00| 17800| 0154| 8382|
300| 00| 505900| 0233| 5279|
我想按SECURITY_ID在上述数据框上进行分组...然后将获得以下2个分组:
ACC_SECURITY|ACCOUNT_NO|COSTCENTER| BU| MPU|LONG_IND|SHORT_IND|SECURITY_ID|QUANTITY|POS_NEG_QUANTITY|PROCESSED|ALLOC_QUANTITY|NET_QUANTITY|
+-------------+----------+----------+------+------+--------+---------+-----------+--------+----------------+---------+--------------+------------+
|3FA34789290X2| 3FA34789| 0800TS|BOXXBU|BOXXMP| 0101| 5279| 290X2| 18063| P| | 0| 0|
|3FA34782290X2| 3FA34782| 0800TS|BOXXBU|BOXXMP| 0102| 5322| 290X2| -863| N| | 0| 0|
|3FA34789290X2| 3FA34789| 0800TS|BOXXBU|BOXXMP| 0101| 5279| 290X2| -108926| N| | 0| 0|
ACC_SECURITY|ACCOUNT_NO|COSTCENTER| BU| MPU|LONG_IND|SHORT_IND|SECURITY_ID|QUANTITY|POS_NEG_QUANTITY|PROCESSED|ALLOC_QUANTITY|NET_QUANTITY|
+-------------+----------+----------+------+------+--------+---------+-----------+--------+----------------+---------+--------------+------------+
|9211530135G71| 92115301| 08036C|BOXXBU|BOXXMP| 0154| 8380| 35G71| 8003| P| | 0| 0|
|9211530235G71| 92115302| 08036C|BOXXBU|BOXXMP| 0144| 8382| 35G71| -2883| N| | 0| 0|
+-------------+----------+----------+------+------+--------+---------+-----------+--------+----------------+---------+--------------+------------+
然后在每个组中,我想 -从QUANTITY为正的行中提取LONG_IND,从QUANTITY为负的行中提取SHORT_IND 并从优先级数据帧DF2中查找优先级,并按PRIORITY的升序排序
仅针对第一组进行计算,我得到以下优先级数据:
|LONG_CODE|SHORT_CODE|PRIORITY|
+---------+----------+--------+|
0101| 5322| 16600|
0101| 5279| 19900|
0102| 5279| 298300|
然后根据上述优先级通过添加数量来处理DF1 ...在这里我们进行2次迭代 因此,Row1.Quantity通过基于结果是正数还是负数更新其他列来与Row2.Quantity相加 -ALLOC_QUANTITY-中和了多少数量(此处为18063-863,所以中和了863 -NET_QUANTITY-第二次迭代还需要处理多少数量(此处剩余18063-863 = 17200) -已处理-如果NET_QUANTITY为零,则输入“ p”。所以这里只处理第二行,所以只处理= P
迭代1:处理第1行和第2行。数量= 18063 +(-863)= 17200(正数量保留了第一行的其他列)
ACC_SECURITY|ACCOUNT_NO|COSTCENTER| BU| MPU|LONG_IND|SHORT_IND|SECURITY_ID|QUANTITY|POS_NEG_QUANTITY|PROCESSED|ALLOC_QUANTITY|NET_QUANTITY|
+-------------+----------+----------+------+------+--------+---------+-----------+--------+----------------+---------+--------------+------------+
3FA34789290X2| 3FA34789| 0800TS|BOXXBU|BOXXMP| 0101| 5279| 290X2| 18063| P| N | 863| 17200|
3FA34782290X2| 3FA34782| 0800TS|BOXXBU|BOXXMP| 0102| 5322| 290X2| -863| N| P | 0| 0|
3FA34789290X2| 3FA34789| 0800TS|BOXXBU|BOXXMP| 0101| 5279| 290X2| -108926| N| | 0| 0|
迭代2:处理第1行和第3行。数量= 17200 +(-108926)= -91726(负数量保留了第三行的其他列)
ACC_SECURITY|ACCOUNT_NO|COSTCENTER| BU| MPU|LONG_IND|SHORT_IND|SECURITY_ID|QUANTITY|POS_NEG_QUANTITY|PROCESSED|ALLOC_QUANTITY|NET_QUANTITY|
+-------------+----------+----------+------+------+--------+---------+-----------+--------+----------------+---------+--------------+------------+
3FA34789290X2| 3FA34789| 0800TS|BOXXBU|BOXXMP| 0101| 5279| 290X2| 18063| P| P | 863| 17200|
3FA34782290X2| 3FA34782| 0800TS|BOXXBU|BOXXMP| 0102| 5322| 290X2| -863| N| P | 0| 0|
3FA34789290X2| 3FA34789| 0800TS|BOXXBU|BOXXMP| 0101| 5279| 290X2| -108926| N| P | 0| 0|
这里第1行。已处理成为P,第3行。仅由于组全部完成了3行处理,因此已处理成为P。
我在下面尝试过,但是无法破解,请帮助如何创建一个函数来对每个组中的行进行上述迭代。也许使用GroupByKey和mapgroups。
case class AllocOneProcess(ACC_SECURITY: String, ACCOUNT_NO: String, COSTCENTER: String, BU: String, MPU: String, LONG_IND: String, SHORT_IND: String, SECURITY_ID: String, QUANTITY: String, POS_NEG_QUANTITY: String, PROCESSED: String, ALLOC_QUANTITY: Integer, NET_QUANTITY: Integer)
val toBeProcessedAllocOneDF2 = toBeProcessedAllocOneDF.as[AllocOneProcess]
val toBeProcessedAllocOneDF3 = toBeProcessedAllocOneDF.toDF()
prioritymatrixDF.show()
//toBeProcessedAllocOneDF
val x = toBeProcessedAllocOneDF2
.groupByKey(_.SECURITY_ID)
.mapGroups{
case (nameKey, df) => {
allocOneProcess(df,)
}
}