如何在python数据框中存储调查的答案

时间:2019-08-28 12:04:41

标签: python pandas store survey

我必须进行调查,然后将许多学生的答案保存在数据框中。我试图将答案存储在列表中,但不起作用,因为当我尝试将答案保存在数据框中时,我在同一列中得到了具有多个答案的数据框,而不是将许多行作为答案的数量。 这是我的调查

sex=input('your sex: ')
sex_list.append(sex)
country=input('where do you come from?: ')
country_list.append(country)
sport=input('have you ever play sport?: ')
sport_list.append(sport)
if sport=='no':
reason_no_sport=input('why didnt you play sport?:')
reason_no_sport_list.append(reason_no_sport)
else:
reason_no_sport=np.nan
reason_no_sport_list.append(reason_no_sport)
football=input('have you ever play football?: ')
football_list.append(football)
basket=input('have you ever play basket?: ')
basket_list.append(basket)
swimming=input('have you ever play swimming?: ')
swimming_list.append(swimming)

这是列表

  sex_list=[]
  country_list=[]
  sport_list=[]
  reason_no_sport_list=[]
  football_list=[]
  basket_list=[]
  swimming_list=[]

这是数据框

 df = pd.DataFrame({"sex": [sex_list],
               "country": [country_list],
               "sport":[sport_list],
              "why didnt you play sport?": [reason_no_sport_list],
              "football":[football_list],
              "basket":[basket_list],
              "swimming":[swimming_list]})

结果是类似

sex=`[male, female]`
country= `[usa, england]`

2 个答案:

答案 0 :(得分:1)

我为您提供了可能的解决方案。我创建列表,并在其中添加答案:

sex=[]
country=[]
sport=[]
reason_no_sport=[]
football=[]
basket=[]
swimming=[]
interview='doing'
while interview.upper()=='DOING':
    if((input('Can you answer some questions?: ')).upper()=='YES'):
        sex.append(input('your sex: '))
        country.append(input('where do you come from?: '))
        s=input('have you ever play sport?: ')
        sport.append(s)
        if s.upper() == 'NO': 
            reason_no_sport.append(input('why didnt you play sport?:'))
            football.append(np.nan)
            basket.append(np.nan)
            swimming.append(np.nan)
        else: 
            reason_no_sport.append(np.nan)
            football.append(input('have you ever play football?: '))
            basket.append(input('have you ever play basket?: '))
            swimming.append(input('have you ever play swimming?: '))
    if((input('Do you want to do another interview?: ')).upper()=='YES'):
         continue
    else:
        break
df=pd.DataFrame()
df['sex']=sex
df['country']=country
df['sport']=sport
df['reason_no_sport']=reason_no_sport
df['football']=football
df['basket']=basket
df
  

输出示例:

Can you answer some questions?: yes
your sex: m
where do you come from?: spain
have you ever play sport?: no
why didnt you play sport?:i don't like it
Do you want to do another interview?: yes
Can you answer some questions?: no
Do you want to do another interview?: yes
Can you answer some questions?: yes
your sex: f
where do you come from?: portugal
have you ever play sport?: yes
have you ever play football?: yes
have you ever play basket?: no
have you ever play swimming?: yes
Do you want to do another interview?: no

    sex country  sport  reason_no_sport football    basket  swimming
0   m   spain    no     i don't like it NaN         NaN     NaN
1   f   portugal yes    NaN             yes         no      yes

您还可以创建一个列表(name)并询问名称,并将其用作DataFrame索引:

name=[]

name.append(input('what is your name: '))

df.reindex(name)

答案 1 :(得分:0)

  

我得到的数据帧在同一列中有多个答案,而不是答案数多行

要解决此问题,就可以做到:

df = pd.DataFrame({"sex": sex_list,
          "country": country_list,
          "sport": sport_list,
          "why didnt you play sport?": reason_no_sport_list,
          "football": football_list,
          "basket": basket_list,
          "swimming": swimming_list})

由于它们已经列出,因此您无需使用另一对方括号将它们包装到另一个列表中。

正确构建数据框

但是要小心:您可能希望在最终数据框中为每个回答调查的人排一行。列表不记得这一点,因为在调查中您不会每次都向所有列表中添加元素(您拥有if else)。

要解决此问题,您有两种方法。

  1. 每次都向每个列表添加一个元素。编辑您的if else语句,以便在用户不回答问题时,像在@lostCode answer中一样,将None值添加到相应的列表中。

  2. 完全不使用列表。从头开始创建一个空的数据框,并将答案存储为新行。
    例如,您可以执行以下操作创建空的数据框:

    column_names = ["sex","country","sport",
          "reason_no_sport_list","football","basket","swimming"]
    
    df = pd.DataFrame(columns=column_names)
    

    然后,每次向其他人提出调查建议时,请在None的末尾添加一行df值:

    df = df.append(pd.Series([None]*len(column_names), index=column_names), ignore_index=True)
    

    然后您可以在询问时直接编辑df的最后一行。例如:

    sex = input('your sex: ')
    df.loc[len(df)-1, 'sex'] = sex