我有一个下面的数据框,我可以对其进行适当的处理,以便使用以下命令创建聚类散点图:
library(tidyverse) # data manipulation
library(cluster) # clustering algorithms
library(factoextra) # clustering algorithms & visualization
library(plotly)
df <- USArrests
df <- na.omit(df)
df <- scale(df)
distance <- get_dist(df)
k2 <- kmeans(df, centers = 2, nstart = 25)
df %>%
as_tibble() %>%
mutate(cluster = k2$cluster,
state = row.names(USArrests))
p2<-fviz_cluster(k2, data = df, geom="point")
#+ scale_fill_discrete(name = "Cluster", labels = c("1", "2", "3","4"))
p2
ggplotly(p2)
当我使用ggplotly()
时,图例名称会更改,因此我正在寻找一种手动设置它们甚至完全隐藏图例的方法。
答案 0 :(得分:2)
我遇到十字架的最简单方法是重命名对象中的标签。
p2<-fviz_cluster(k2, data = df, geom="point")
p3 <- ggplotly(p2)
p3[["x"]][["data"]][[2]][["name"]] <- "2"
p3
虽然不漂亮,但短期内会有所帮助。
编辑:所以有多个问题 第一:关于图例标签 第二:关于情节中的互动点 #给出了大多数示例代码, #仅更改中心变量
# Example
library(tidyverse) # data manipulation
library(cluster) # clustering algorithms
library(factoextra) # clustering algorithms & visualization
library(plotly)
df <- USArrests
df <- na.omit(df)
df <- scale(df)
distance <- get_dist(df)
# added center variable for number of centers in kmeans
# this will also be used to select elemnets from ggplot or ggplotly later
centers=4
k2 <- kmeans(df, centers = centers, nstart = 25)
df %>%
as_tibble() %>%
mutate(cluster = k2$cluster,
state = row.names(USArrests))
p2<-fviz_cluster(k2, data = df, geom="point")
p2
p3 <- ggplotly(p2)
# Solution
# First Problem: Changing legend labels
# Because the transition from ggplot to ggplotly
# messes up multiple scales like here (color and shape)
# Why it looks like intended when only changing the point layer,
# I don't know
for (i in 1:centers) {
p3[["x"]][["data"]][[i]][["name"]] <- i
}
# Second Problem: interactive points
# ggplot saves the data in one list and ggplotly splits the data
# depending on layer and cluster
# for the labels it is enough to change the point layers
# (the first x depending on num. of centers)
# to add more inforamtion to labels
# manipulate the variable names_states with html
for (i in 1:centers) {
name_states <- p2[["data"]]%>%
filter(cluster==i)%>%
select(name)
p3[["x"]][["data"]][[i]][["text"]] <- as.vector(name_states$name)
}
# Changing order of layers because polygon-layer is on top and
# makes it impossible to hover over points beneeth
p3[["x"]][["data"]] <- p3[["x"]][["data"]][(centers*3):1]
# Now you can hover over every point and can see the state name
p3