计算满足条件的熊猫数据框中某些行的标准差

时间:2019-08-26 09:28:32

标签: python pandas

我想计算熊猫数据框中“值”的标准偏差,条件是为常见的“ groupped_measurement”计算得出。计算之后,我想计算注释行。

我尝试过以下行:

df['standard_deviation'] = df['groupped_measurement'].diff().fillna(df['value']).std()

,但无法正常工作。我的完整代码如下所示:

import pandas as pd 
import numpy as np

# Define input dataframe
df = {'servo_in_position':      [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,1,1,1,1,1,1],
        'value':                [0.2,2.1,3.5,6.7,2.1,3.4,5.7,9.6,3.2,1.2,6.3,8.5,7.4,6.2,3.4,3.8,1.7,2.8,7.6,4.5,9.0]}

df = pd.DataFrame(df,columns= ['servo_in_position','value'])
print("Dataframe is:\n",df)

print("Groupping data according to servo positions, please wait...")
df['groupped_measurement'] = df['servo_in_position'].diff().fillna(df['servo_in_position']).eq(1).cumsum().mask(df['servo_in_position'] == 0, 0)
df['standard_deviation'] = df['groupped_measurement'].diff().fillna(df['value']).std()

# df=df.groupby('groupped_measurement',as_index=False).mean()
# df['new_value']=df['standard_deviation']*100/df['value']

print("Data groupped successfully!")
print("Input data:\n",df)

预期的输出如下:

       servo_in_position       value        groupped_measurement      standard_deviation
0                1                0.2                1                1.6563011
1                1                2.1                1                1.6563011
2                1                3.5                1                1.6563011
3                0                6.7                0                0
4                0                2.1                0                0
5                0                3.4                0                0
6                1                5.7                2                3.194526569
7                1                9.6                2                3.194526569
8                1                3.2                2                3.194526569
9                1                1.2                2                3.194526569
10                1                6.3                2                3.194526569
11                0                8.5                0                0
12                0                7.4                0                0
13                0                6.2                0                0
14                0                3.4                0                0
15                1                3.8                3                2.832666588
16                1                1.7                3                2.832666588
17                1                2.8                3                2.832666588
18                1                7.6                3                2.832666588
19                1                4.5                3                2.832666588
20                1                9                 3                2.832666588

2 个答案:

答案 0 :(得分:1)

您可以简化代码-创建Series s1s2,然后将stdGroupBy.transform一起使用,以用聚集值填充新列,根据条件为集合0添加了numpy.where

mask = df['servo_in_position'] == 0
s1 = df['servo_in_position'].diff().ne(0).cumsum()
s2 = df['value'].groupby(s1).transform('std')

#if need omit helper column simple remove df['groupped_measurement'] = np.where(mask, 0, s1)
df['groupped_measurement'] = np.where(mask, 0, s1)
df['standard_deviation'] = np.where(mask, 0, s2)
print("Dataframe is:\n",df)
     servo_in_position  value  groupped_measurement  standard_deviation
0                   1    0.2                     1            1.656301
1                   1    2.1                     1            1.656301
2                   1    3.5                     1            1.656301
3                   0    6.7                     0            0.000000
4                   0    2.1                     0            0.000000
5                   0    3.4                     0            0.000000
6                   1    5.7                     3            3.194527
7                   1    9.6                     3            3.194527
8                   1    3.2                     3            3.194527
9                   1    1.2                     3            3.194527
10                  1    6.3                     3            3.194527
11                  0    8.5                     0            0.000000
12                  0    7.4                     0            0.000000
13                  0    6.2                     0            0.000000
14                  0    3.4                     0            0.000000
15                  1    3.8                     5            2.832667
16                  1    1.7                     5            2.832667
17                  1    2.8                     5            2.832667
18                  1    7.6                     5            2.832667
19                  1    4.5                     5            2.832667
20                  1    9.0                     5            2.832667

答案 1 :(得分:1)

首先,我们创建一个系列s,它将servo_in_pisition的每个更改定义为一个唯一的组。

然后我们在这些组上GroupBy.transform(std)。我们使用transform返回等长向量,因此可以将其定义为现有数据帧的新列,否则数据将被汇总。

如果np.where的值,我们使用std有条件地分配servo_in_pisition != 0

s1 = df['servo_in_position'].diff().ne(0).cumsum()
s2 = df.groupby(s)['value'].transform('std')

df['standard_deviation'] = np.where(df['servo_in_position'].ne(0), s2, 0)

输出

    servo_in_position  value  standard_deviation
0                   1    0.2            1.656301
1                   1    2.1            1.656301
2                   1    3.5            1.656301
3                   0    6.7            0.000000
4                   0    2.1            0.000000
5                   0    3.4            0.000000
6                   1    5.7            3.194527
7                   1    9.6            3.194527
8                   1    3.2            3.194527
9                   1    1.2            3.194527
10                  1    6.3            3.194527
11                  0    8.5            0.000000
12                  0    7.4            0.000000
13                  0    6.2            0.000000
14                  0    3.4            0.000000
15                  1    3.8            2.832667
16                  1    1.7            2.832667
17                  1    2.8            2.832667
18                  1    7.6            2.832667
19                  1    4.5            2.832667
20                  1    9.0            2.832667