我正在使用熊猫版本0.25.0
来计算定价合同的加权平均值。
数据:
{'Counterparty': {0: 'A',
1: 'B',
2: 'B',
3: 'A',
4: 'A',
5: 'C',
6: 'D',
7: 'E',
8: 'E',
9: 'C',
10: 'F',
11: 'C',
12: 'C',
13: 'G'},
'Contract': {0: 'A1',
1: 'B1',
2: 'B2',
3: 'A2',
4: 'A3',
5: 'C1',
6: 'D1',
7: 'E1',
8: 'E2',
9: 'C2',
10: 'F1',
11: 'C3',
12: 'C4',
13: 'G'},
'Delivery': {0: '1/8/2019',
1: '1/8/2019',
2: '1/8/2019',
3: '1/8/2019',
4: '1/8/2019',
5: '1/8/2019',
6: '1/8/2019',
7: '1/8/2019',
8: '1/8/2019',
9: '1/8/2019',
10: '1/8/2019',
11: '1/8/2019',
12: '1/8/2019',
13: '1/8/2019'},
'Price': {0: 134.0,
1: 151.0,
2: 149.0,
3: 134.0,
4: 132.14700000000002,
5: 150.0,
6: 134.566,
7: 153.0,
8: 151.0,
9: 135.0,
10: 149.0,
11: 135.0,
12: 147.0,
13: 151.0},
'Balance': {0: 200.0,
1: 54.87,
2: 200.0,
3: 133.44,
4: 500.0,
5: 500.0,
6: 1324.05,
7: 279.87,
8: 200.0,
9: 20.66,
10: 110.15,
11: 100.0,
12: 100.0,
13: 35.04}}
方法1:
df.pivot_table(
index=['Counterparty', 'Contract'],
columns='Delivery',
values=['Balance', 'Price'],
aggfunc={
'Balance': sum,
'Price': np.mean
},
margins=True
).fillna('').swaplevel(0,1,axis=1).sort_index(axis=1).round(3)
结果1:
有什么方法可以在pandas数据透视表中使用np.average?
aggfunc = {
'Balance': sum,
'Price': lambda x: np.average(x, weights='Balance')
}
当前结果:143.265,由np.mean计算。
所需结果:140.424,它是Price
乘以Balance
的加权平均值。
方法2:
df_grouped = df.groupby(['Counterparty', 'Contract', 'Delivery']).apply(lambda x: pd.Series(
{
'Balance': x['Balance'].sum(),
'Price': np.average(x['Price'], weights=x['Balance']),
}
)).round(3).unstack().swaplevel(0,1, axis=1).sort_index(axis=1)
结果2:
使用groupby,我需要pd.concat
和append
逐级求和才能获得aggfunc = {Balance: sum, Price: np.average}
的总数。
预期结果是:
Balance: 3758.08 (using sum)
Price: 140.424 (using np.average)
哪个显示在所有数据行下方的“总计”行中。
答案 0 :(得分:2)
只需定义一个自定义函数来计算加权平均值,并将其与代码中的aggfunc
而非np.mean
配合使用,如下所示:
wa_func =lambda x: np.average(x, weights=df.loc[x.index, 'Balance'])
df1 = df.pivot_table(
index=['Counterparty', 'Contract'],
columns='Delivery',
values=['Balance', 'Price'],
aggfunc={
'Balance': sum,
'Price': wa_func
},
margins=True
).fillna('').swaplevel(0,1,axis=1).sort_index(axis=1).round(3)
Out[35]:
Delivery 1/8/2019 All
Balance Price Balance Price
Counterparty Contract
A A1 200.00 134.000 200.00 134.000
A2 133.44 134.000 133.44 134.000
A3 500.00 132.147 500.00 132.147
B B1 54.87 151.000 54.87 151.000
B2 200.00 149.000 200.00 149.000
C C1 500.00 150.000 500.00 150.000
C2 20.66 135.000 20.66 135.000
C3 100.00 135.000 100.00 135.000
C4 100.00 147.000 100.00 147.000
D D1 1324.05 134.566 1324.05 134.566
E E1 279.87 153.000 279.87 153.000
E2 200.00 151.000 200.00 151.000
F F1 110.15 149.000 110.15 149.000
G G 35.04 151.000 35.04 151.000
All 3758.08 140.424 3758.08 140.424