我已经阅读了与我的问题类似的多个帖子,但我仍然无法弄明白。我有一个看起来如下的熊猫df(多天):
Out[1]:
price quantity
time
2016-06-08 09:00:22 32.30 1960.0
2016-06-08 09:00:22 32.30 142.0
2016-06-08 09:00:22 32.30 3857.0
2016-06-08 09:00:22 32.30 1000.0
2016-06-08 09:00:22 32.35 991.0
2016-06-08 09:00:22 32.30 447.0
...
计算我能做的vwap:
df['vwap'] = (np.cumsum(df.quantity * df.price) / np.cumsum(df.quantity))
但是,我想每天重新开始(groupby),但我无法弄清楚如何使用(lambda?)函数。
df['vwap_day'] = df.groupby(df.index.date)['vwap'].apply(lambda ...
速度至关重要。非常感谢任何帮助:)
答案 0 :(得分:7)
选项0
普通的香草方法
def vwap(df):
q = df.quantity.values
p = df.price.values
return df.assign(vwap=(p * q).cumsum() / q.cumsum())
df = df.groupby(df.index.date, group_keys=False).apply(vwap)
df
price quantity vwap
time
2016-06-08 09:00:22 32.30 1960.0 32.300000
2016-06-08 09:00:22 32.30 142.0 32.300000
2016-06-08 09:00:22 32.30 3857.0 32.300000
2016-06-08 09:00:22 32.30 1000.0 32.300000
2016-06-08 09:00:22 32.35 991.0 32.306233
2016-06-08 09:00:22 32.30 447.0 32.305901
选项1
投掷一点eval
df = df.assign(
vwap=df.eval(
'wgtd = price * quantity', inplace=False
).groupby(df.index.date).cumsum().eval('wgtd / quantity')
)
df
price quantity vwap
time
2016-06-08 09:00:22 32.30 1960.0 32.300000
2016-06-08 09:00:22 32.30 142.0 32.300000
2016-06-08 09:00:22 32.30 3857.0 32.300000
2016-06-08 09:00:22 32.30 1000.0 32.300000
2016-06-08 09:00:22 32.35 991.0 32.306233
2016-06-08 09:00:22 32.30 447.0 32.305901
答案 1 :(得分:4)
我之前也使用过这种方法,但如果您试图限制窗口期,它的效果就不太准确。相反,我发现 TA python 库工作得非常好: https://technical-analysis-library-in-python.readthedocs.io/en/latest/index.html
from ta.volume import VolumeWeightedAveragePrice
# ...
def vwap(dataframe, label='vwap', window=3, fillna=True):
dataframe[label] = VolumeWeightedAveragePrice(high=dataframe['high'], low=dataframe['low'], close=dataframe["close"], volume=dataframe['volume'], window=window, fillna=fillna).volume_weighted_average_price()
return dataframe