如何修改Keras图层的权重?

时间:2019-08-22 04:18:54

标签: tensorflow keras tensorflow2.0

我试图通过在Keras中将其设置为特定值来冻结图层的某些权重。如何在不将精力转移到CPU的情况下实现这一目标?

我检查了类似的问题,例如modify layer weights in kerasmodify layer parameters in keras

答案建议使用get_weights()和'set_weights()',但是这些函数在CPU和GPU之间移动权重。

我创建了一个自定义的lambda层,并在该层内部修改了model.trainable_weights,但是权重并未更新。

我使用了tf高级教程,只是添加了一个自定义lambda层,该层将权重乘以零。 Colab notebook with same code

from __future__ import absolute_import, division, print_function, unicode_literals

import tensorflow as tf

from tensorflow.keras.layers import Dense, Flatten, Conv2D, Lambda
from tensorflow.keras import Model

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

# Add a channels dimension
x_train = x_train[..., tf.newaxis]
x_test = x_test[..., tf.newaxis]

def antirectifier(x):
    for i,w in enumerate(model.trainable_weights):
        model.trainable_weights[i] = tf.multiply(w,0)

    return x

class MyModel(Model):
  def __init__(self):
    super(MyModel, self).__init__()
    self.conv1 = Conv2D(32, 3, activation='relu')
    self.flatten = Flatten()
    self.d1 = Dense(128, activation='relu')
    self.d2 = Dense(10, activation='softmax')
    self.mask = Lambda(antirectifier)

  def call(self, x):
    x = self.conv1(x)
    x = self.flatten(x)
    x = self.d1(x)
    x = self.mask(x)

    return self.d2(x)

# Create an instance of the model
model = MyModel()

loss_object = tf.keras.losses.SparseCategoricalCrossentropy()

optimizer = tf.keras.optimizers.Adam()

train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')

test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')

@tf.function
def train_step(images, labels):
  with tf.GradientTape() as tape:
    predictions = model(images)
    loss = loss_object(labels, predictions)
  gradients = tape.gradient(loss, model.trainable_variables)
  optimizer.apply_gradients(zip(gradients, model.trainable_variables))

  train_loss(loss)
  train_accuracy(labels, predictions)

@tf.function
def test_step(images, labels):
  predictions = model(images)
  t_loss = loss_object(labels, predictions)

  test_loss(t_loss)
  test_accuracy(labels, predictions)

EPOCHS = 5

for epoch in range(EPOCHS):
  for images, labels in train_ds:
    train_step(images, labels)

  for test_images, test_labels in test_ds:
    test_step(test_images, test_labels)

  template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
  print(template.format(epoch+1,
                        train_loss.result(),
                        train_accuracy.result()*100,
                        test_loss.result(),
                        test_accuracy.result()*100))

  # Reset the metrics for the next epoch
  train_loss.reset_states()
  train_accuracy.reset_states()
  test_loss.reset_states()
  test_accuracy.reset_states()

由于权重为零,因此准确性应较低。但是权重不会改变。

0 个答案:

没有答案