我遇到此错误:ValueError:当我运行此代码时,无法将字符串转换为float:'nonPdr':
model = Sequential()
model.add(Conv2D(input_shape=(605,700,3), filters=64, kernel_size=(3,3), padding="valid",activation="tanh"))
model.add(Flatten())
model.add(Dense(32, activation='tanh', input_dim=100))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])
data, labels = ReadImages(TRAIN_DIR)
# Train the model, iterating on the data in batches of 32 samples
model.fit(np.array(data), np.array(labels), epochs=10, batch_size=32)
详细信息:“ nonPdr”是我的2个img类之一
更新我的readImg方法
def ReadImages(Path):
ImageList = list()
LabelList = list()
ImageCV = list()
# Get all subdirectories
FolderList = os.listdir(Path)
# Loop over each directory
for File in FolderList:
if(os.path.isdir(os.path.join(Path, File))):
for Image in os.listdir(os.path.join(Path, File)):
# Add the image path to the list
ImageList.append(os.path.join(Path, File) + os.path.sep + Image)
# Convert the path into a file
ImageCV.append(cv2.imread(os.path.join(Path, File) + os.path.sep + Image))
# Add a label for each image and remove the file extension
LabelList.append(os.path.splitext(File)[0])
else:
ImageList.append(os.path.join(Path, File))
ImageCV.append(cv2.imread(os.path.join(Path, File) + os.path.sep + Image))
# Add a label for each image and remove the file extension
LabelList.append(os.path.splitext(File)[0])
return ImageCV, LabelList
答案 0 :(得分:0)
在ReadImages函数中,您正在创建字符串列表:
LabelList.append(os.path.splitext(File)[0])
稍后,当您使用ReadImages函数时,您尝试将此字符串列表转换为numpy数组。在这里:
data, labels = ReadImages(TRAIN_DIR)
model.fit(np.array(data), np.array(labels), epochs=10, batch_size=32)
可能的解决方案可能是将您的班级名称分配给数字:
classes = ["nonPdr", "another_class"]
LabelList.append(classes.index[os.path.splitext(File)[0]])
当您的类为“ nonPdr”时,0将附加到LabelList,如果您的类是“ other_class”,则将附加1。