我想使用几个条件和列为一个大表创建一个新列,并且不确定采用哪种最佳方法。
df = pd.DataFrame({'a': ['A', "B", "B", "C", "D"],
'b':['y','n','y','n', np.nan], 'c':[10,20,10,40,30], 'd':[.3,.1,.4,.2, .1]})
df.head()
def fun(df=df):
df=df.copy()
if df.a=='A' & df.b =='n':
df['new_Col'] = df.c+df.d
if df.a=='A' & df.b =='y':
df['new_Col'] = df.d *2
else:
df['new_Col'] = 0
return df
fun()
OR
def fun(df=df):
df=df.copy()
if df.a=='A' & df.b =='n':
return = df.c+df.d
if df.a=='A' & df.b =='y':
return df.d *2
else:
return 0
df['new_Col"] df.apply(fun)
或使用np.where
:
df['new_Col'] = np.where(df.a=='A' & df.b =='n', df.c+df.d,0 )
df['new_Col'] = np.where(df.a=='A' & df.b =='y', df.d *2,0 )
答案 0 :(得分:4)
您似乎需要np.select
a, n, y = df.a.eq('A'), df.b.eq('n'), df.b.eq('y')
df['result'] = np.select([a & n, a & y], [df.c + df.d, df.d*2], default=0)
答案 1 :(得分:2)
这是一种算术方式(在案例a = 'A'
和b = 'n'
的示例中我又增加了一行):
样本
Out[1369]:
a b c d
0 A y 10 0.3
1 B n 20 0.1
2 B y 10 0.4
3 C n 40 0.2
4 D NaN 30 0.1
5 A n 50 0.9
nc = df.a.eq('A') & df.b.eq('y')
mc = df.a.eq('A') & df.b.eq('n')
nr = df.d * 2
mr = df.c + df.d
df['new_col'] = nc*nr + mc*mr
Out[1371]:
a b c d new_col
0 A y 10 0.3 0.6
1 B n 20 0.1 0.0
2 B y 10 0.4 0.0
3 C n 40 0.2 0.0
4 D NaN 30 0.1 0.0
5 A n 50 0.9 50.9