我有一个训练有素的模型,该模型使用要素层作为输入。 我对模型在验证和测试集上的训练和性能感到满意。
但是现在,我想手动创建一个新示例以发送到模型并从中进行预测。
我的代码如下:
...
categorical_columns = []
numeric_columns = []
# numeric cols
for header in ['CreditScore', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard','IsActiveMember','EstimatedSalary']:
numeric_columns.append(feature_column.numeric_column(header))
# categorical cols
categories = {
'Geography':['France', 'Spain', 'Germany'],
'Gender': ['Female', 'Male']
}
for header, possible_values in categories.items():
cat_col = tf.feature_column.categorical_column_with_vocabulary_list(key=header, vocabulary_list=possible_values)
categorical_columns.append(tf.feature_column.indicator_column(cat_col))
feature_columns = numeric_columns + categorical_columns
feature_layer = tf.keras.layers.DenseFeatures(feature_columns)
model = tf.keras.Sequential([
feature_layer,
layers.Dense(6, activation='relu'),
layers.Dense(6, activation='relu'),
layers.Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'],
run_eagerly=True)
history = model.fit(x=train_ds, validation_data=val_ds, epochs=4)
不用担心这个问题的特征缩放,我如何将这些数据发送到模型并从中获得预测? 我应该使用什么语法?
谢谢您的帮助。