我刚训练过这样的模型:
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
num_examples = len(X_train)
print("W00T IT IS TRAINING ")
print()
for i in range(EPOCHS):
X_train, y_train = shuffle(X_train, y_train)
for offset in range(0, num_examples, BATCH_SIZE):
end = offset + BATCH_SIZE
batch_x, batch_y = X_train[offset:end], y_train[offset:end]
sess.run(training_operation, feed_dict={x: batch_x, y: batch_y})
validation_accuracy = evaluate(X_validation, y_validation)
print("EPOCH {} ...".format(i+1))
print("Validation Accuracy = {:.3f}".format(validation_accuracy))
print()
saver.save(sess, 'LeNet')
print("Model saved")
现在我已经加载了这样的图像:img1 = img.imread('./images_32x32/test_1.png')
现在我唯一想做的就是根据img1
进行预测。
我该怎么做?
更新
添加了我的softmax功能:
logits = LeNet(x)
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits, one_hot_y)
loss_operation = tf.reduce_mean(cross_entropy)
optimizer = tf.train.AdamOptimizer(learning_rate = rate)
training_operation = optimizer.minimize(loss_operation)
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(one_hot_y, 1))
accuracy_operation = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver()
答案 0 :(得分:5)
这取决于您如何定义图表,并取决于您如何定义'x'占位符的形状 假设'x'的定义如下:
x = tf.placeholder(shape=[None, IMG_WIDTH, IMG_HEIGHT, NUM_COLOR_CHANNELS], dtype=tf.float32)
假设'pred'是给你预测的张量,你只需要评估这个张量:
predictions = sess.run(pred, feed_dict={x: img1})