反向传播错误:神经网络预测相同的类

时间:2019-08-07 18:00:44

标签: python python-3.x numpy neural-network

我正在使用Numpy从零开始编写神经网络代码。但是,即使在对我的网络进行了许多训练之后,每个班级的预测都是随机的,并且无论输入内容如何都保持不变。

我已根据Andrew Ng的Coursera ML课程和对datascience.com的帖子检查了我的概念。我认为我犯了一些非常概念性的错误,我无法弄清楚。

这是我的代码:

import numpy as np

def sigmoid(x):
    return 1 / (1 + np.exp(-x))

def dsigmoid(y):
    return y * (1 - y)

class NeuralNetwork:
    def __init__(self, shape):
        self.n_layers = len(shape)
        self.shape = shape

        self.weight = []
        self.bias = []

        i = 0
        while i < self.n_layers - 1:
            self.weight.append(np.random.normal(loc=0.0, scale=0.5, 
                                                size=(self.shape[i + 1], self.shape[i])))
            self.bias.append(np.random.normal(loc=0.0, scale=0.3,
                                                size=(self.shape[i + 1], 1)))
            i += 1

    def predict(self, X):
        z = self.weight[0] @ X + self.bias[0]
        a = sigmoid(z)
        i = 1
        while i < self.n_layers - 1:
            z = self.weight[i] @ a + self.bias[i]
            a = sigmoid(z)
            i += 1

        return a

    def predictVerbose(self, X):
        layers = [X]
        z = self.weight[0] @ X + self.bias[0]
        a = sigmoid(z)
        layers.append(a)
        i = 1
        while i < self.n_layers - 1:
            z = self.weight[i] @ a + self.bias[i]
            a = sigmoid(z)
            layers.append(a)
            i += 1

        return layers

    def gradOne(self, X, y):
        layers = self.predictVerbose(X)
        h = layers[-1]

        delta_b = [(h - y) * dsigmoid(h)]
        delta_w = [delta_b[0] @ layers[-2].T]

        i = 1
        while i < self.n_layers - 1:
            buff = delta_b[-1]
            delta_b.append((self.weight[-i].T @ buff) * dsigmoid(layers[-(i + 1)]))
            delta_w.append(delta_b[-1] @ layers[-(i + 2)].T)
            i += 1


        return delta_b[::-1], delta_w[::-1]

    def grad(self, data, l_reg=0):
        #data: x1, x2, x3, ..., xm, y=(0, 1, 2,...)
        m = len(data)
        delta_b = []
        delta_w = []
        i = 0
        while i < self.n_layers - 1:
            delta_b.append(np.zeros((self.shape[i + 1], 1)))
            delta_w.append(np.zeros((self.shape[i + 1], self.shape[i])))
            i += 1


        for row in data:
            X = np.array(row[:-1])[np.newaxis].T
            y = np.zeros((self.shape[-1], 1))
            # print(row)
            y[row[-1], 0] = 1
            buff1, buff2 = self.gradOne(X, y)
            i = 0
            while i < len(delta_b):
                delta_b[i] += buff1[i] / m
                delta_w[i] += buff2[i] / m
                i += 1

        return delta_b, delta_w


    def train(self, data, batch_size, epoch, alpha, l_reg=0):
        m = len(data)
        for i in range(epoch):
            j = 0
            while j < m:
                delta_b, delta_w = self.grad(data[i: (i + batch_size + 1)])
                i = 0
                while i < len(self.weight):
                    self.weight[i] -= alpha * delta_w[i]
                    self.bias[i] -= alpha * delta_b[i]
                    i += 1
                j += batch_size        



if __name__ == "__main__":
    x = NeuralNetwork([2, 2, 2])
    # for y in x.gradOne(np.array([[1], [2], [3]]), np.array([[0], [1]])):
    #     print(y.shape)

    data = [
        [1, 1, 0],
        [0, 0, 0],
        [1, 0, 1],
        [0, 1, 1]
    ]

    x.train(data, 4, 1000, 0.1)
    print(x.predict(np.array([[1], [0]])))
    print(x.predict(np.array([[1], [1]])))

请指出我要去哪里。

2 个答案:

答案 0 :(得分:0)

不幸的是,我没有足够的声誉来评论您的帖子,但这是我制作的仅用于Numpy神经网络的链接(已对sklearn和mnist的blob数据进行了测试)。

https://github.com/jaymody/backpropagation/blob/master/old/NeuralNetwork.py

答案 1 :(得分:0)

您仍然对此问题感兴趣吗?据我了解,您尝试使用具有直接和反向输出的XOR感知器吗?
看起来像:
1.您需要更改表达式
delta_b, delta_w = self.grad(data[i: (i + batch_size + 1)])
delta_b, delta_w = self.grad(data[::])
train函数中。
2.用于初始化突触权重和偏向权重的一些随机值需要alpha=0.1更多的训练周期。尝试使用alpha(我将其设置为2)和纪元数(我尝试将其设置为20000)。

您的代码也不适用于1层网络。我尝试训练1层AND和OR感知器,但结果却很奇怪(或者可能需要更多的周期)。但是在两层的情况下,它可以正常工作。