我正在尝试在keras循环中的每次迭代中使用新数据样本训练模型(使用tensorflow后端)。由于一些迭代后GPU内存错误,我附加了K.clear_session()。但是,经过一轮迭代后,代码将引发错误:
'Cannot interpret feed_dict key as Tensor: ' + e.args[0])
TypeError: Cannot interpret feed_dict key as Tensor: Tensor Tensor("Placeholder:0", shape=(7, 7, 3, 64), dtype=float32) is not an element of this graph.
如果我最后删除了K.clear_session(),则没有错误。有谁能解释为什么这个错误会在第二次迭代中出现?
我尝试了其他方法(用于gpu发布),但没有一个起作用,这是我的最后选择。但这会引发错误。我粘贴了一个示例代码,它会产生错误。请注意,这不是实际的代码,我只是举了一个例子来重现我在实际代码中遇到的错误。
from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np
import tensorflow as tf
import random
seed_value= 0
import os
import keras
os.environ['PYTHONHASHSEED']=str(seed_value)
random.seed(0)
np.random.seed(0)
from keras import backend as K
from keras.datasets import cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
for i in range(3):
base_model = tf.keras.applications.resnet50.ResNet50(weights='imagenet', input_shape=(32, 32, 3),
include_top=False)
x = base_model.output
x = tf.keras.layers.GlobalAveragePooling2D()(x)
output = tf.keras.layers.Dense(10, activation='softmax',
kernel_initializer=tf.keras.initializers.RandomNormal(seed=4))(x)
model = tf.keras.Model(inputs=base_model.input, outputs=output)
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
for layer in base_model.layers:
layer.trainable = False
optimizer = tf.train.AdamOptimizer(learning_rate=0.0001)
model.compile(optimizer=optimizer, loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train,y_train,batch_size=1024,epochs=1,verbose=1)
K.clear_session()
Traceback (most recent call last):
File "C:\Users\sirshad\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1092, in _run
subfeed, allow_tensor=True, allow_operation=False)
File "C:\Users\sirshad\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 3490, in as_graph_element
return self._as_graph_element_locked(obj, allow_tensor, allow_operation)
File "C:\Users\sirshad\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 3569, in _as_graph_element_locked
raise ValueError("Tensor %s is not an element of this graph." % obj)
ValueError: Tensor Tensor("Placeholder:0", shape=(7, 7, 3, 64), dtype=float32) is not an element of this graph.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "E:/codes/experiments-AL/breakhis/40X-M-B/codes-AL/error_debug.py", line 22, in <module>
include_top=False)
File "C:\Users\sirshad\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\keras\applications\__init__.py", line 70, in wrapper
return base_fun(*args, **kwargs)
File "C:\Users\sirshad\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\keras\applications\resnet50.py", line 32, in ResNet50
return resnet50.ResNet50(*args, **kwargs)
File "C:\Users\sirshad\AppData\Local\Programs\Python\Python36\lib\site-packages\keras_applications\resnet50.py", line 291, in ResNet50
model.load_weights(weights_path)
File "C:\Users\sirshad\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\keras\engine\network.py", line 1544, in load_weights
saving.load_weights_from_hdf5_group(f, self.layers)
File "C:\Users\sirshad\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\keras\engine\saving.py", line 806, in load_weights_from_hdf5_group
K.batch_set_value(weight_value_tuples)
File "C:\Users\sirshad\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\keras\backend.py", line 2784, in batch_set_value
get_session().run(assign_ops, feed_dict=feed_dict)
File "C:\Users\sirshad\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\client\session.py", line 929, in run
run_metadata_ptr)
File "C:\Users\sirshad\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1095, in _run
'Cannot interpret feed_dict key as Tensor: ' + e.args[0])
TypeError: Cannot interpret feed_dict key as Tensor: Tensor Tensor("Placeholder:0", shape=(7, 7, 3, 64), dtype=float32) is not an element of this graph.
Process finished with exit code 1
答案 0 :(得分:0)
我能够通过将imagenet预先训练的模型保存到磁盘中,然后在调用tf.keras.backend.clear_session()之后每次循环加载来解决此问题。因此,将基本模型保存到文件,然后加载即可。但是我仍然感到困惑,为什么它在
之前不起作用base_model = tf.keras.applications.resnet50.ResNet50