将def函数递归地应用于数据框

时间:2019-07-28 04:20:31

标签: python pandas dataframe recursion user-defined-functions

我正在尝试“递归”计算Cat的列值

每个循环都应计算一组x的Cat列最大值(Catz)。如果日期范围小于等于60,则Cat列值应更新为Catz + = 1。我对这一过程进行了一些了解。但是,我之外还有成千上万的其他数据集,无需以arcpy友好格式进行转换。我对熊猫不太熟悉。

参考[1]:Calculate DataFrame values recursively和[2]:python pandas- apply function with two arguments to columns。我仍然不太了解Series / Dataframe概念以及如何应用任一结果

import pandas as pd
import numpy as np
from datetime import datetime
from datetime import datetime as dt
from datetime import timedelta
import time
from datetime import date
dict = {'x':["ASPELBJNMI", "JUNRNEXCRG", "ASPELBJNMI", "JUNRNEXCRG"], 
        'start': ["6/27/2018", "8/4/2018", "8/22/2018", "8/12/2018"], 
        'finish':["8/11/2018", "10/3/2018", "8/31/2018", "10/26/2018"],
        'DateRange':[0,0,0,0],
        'Cat':[-1,-1,-1,-1],
        'ID':[1,2,3,4]} 

df = pd.DataFrame(dict)

df.set_index('ID')
def classd(houp):
    Catz = houp.Cat.min()
    Catz +=1

    houp  = houp.groupby('x')
    for x, houp2 in houp:


        houp.DateRange  = (pd.to_datetime(houp.finish.loc[:]).min()- houp.start.loc[:]).astype('timedelta64[D]')

    houp.Cat = np.where(houp.DateRange<=60, Catz , -1)
    return houp

df['Cat'] =  df[['x','DateRange','Cat']].apply(classd, axis=1).Cat
print df

我运行代码时得到以下回溯

Catz = houp.Cat.min() AttributeError :(““ long”对象没有属性'min'”,u发生在索引0')

期望的结果

   OBJECTID_1 * Conc *  ID  start   finish  DateRange   Cat
1   ASPELBJNMI  LAPMT   6/27/2018   8/11/2018   45  0
2   ASPELBJNMI  KLKIY   8/22/2018   8/31/2018   9   1
15  JUNRNEXCRG  CGCHK   8/4/2018    10/3/2018   60  1
16  JUNRNEXCRG  IQYGJ   8/12/2018   10/26/2018  83  -1

0 个答案:

没有答案