我正在尝试使用TensorFlow和TensorFlow概率实现期望最大化算法。直到我尝试实现“丢失数据”(数据可以在某些随机维度上包含NaN值)之前,它的效果都很好。
问题在于,由于缺少数据,我无法再将所有操作作为矢量操作进行操作,因此必须使用索引和for循环,如下所示:
# Here we iterate through all the data samples
for i in range(n):
# x_i is the sample i
x_i = tf.expand_dims(x[:, i], 1)
gamma.append(estimate_gamma(x_i, pi, norm, ber))
est_x_n_i = []
est_xx_n_i = []
est_x_b_i = []
for j in range(k):
mu_k = norm.mean()[j, :]
sigma_k = norm.covariance()[j, :, :]
rho_k = ber.mean()[j, :]
est_x_n_i.append(estimate_x_norm(x_i[:d, :], mu_k, sigma_k))
est_xx_n_i.append(estimate_xx_norm(x_i[:d, :], mu_k, sigma_k))
est_x_b_i.append(estimate_x_ber(x_i[d:, :], rho_k))
est_x_n.append(tf.convert_to_tensor(est_x_n_i))
est_xx_n.append(tf.convert_to_tensor(est_xx_n_i))
est_x_b.append(tf.convert_to_tensor(est_x_b_i))
我发现这些操作不是很有效。虽然第一个样本每个样本花费的时间少于1秒,但在50个样本之后,每个样本花费了3秒的时间。我想这是因为我在会话内部创建了不同的张量,这使内存或其他东西混乱了。
我使用TensorFlow还是一个新手,很多人只将TensorFlow用于深度学习和神经网络,所以我找不到解决方案。
然后,我尝试仅使用numpy数组和numpy操作来实现先前的for循环以及在该循环内调用的函数。但这返回了以下错误:
您必须使用以下格式输入占位符张量'Placeholder_4'的值 dtype double和shape [8,18]
发生此错误的原因是,当它尝试在循环内执行numpy函数时,尚未提供占位符。
pi_k, mu_k, sigma_k, rho_k, gamma_ik, exp_loglik = exp_max_iter(x, pi, dist_norm, dist_ber)
pi, mu, sigma, rho, responsability, NLL[i + 1] = sess.run([pi_k, mu_k, sigma_k, rho_k, gamma_ik, exp_loglik],{x: samples})
有什么办法解决这个问题?谢谢。
答案 0 :(得分:0)
要回答您的标题问题“是否可以在TensorFlow会话中调用Numpy函数?”,我已经在一些示例代码下面放置了执行“ numpy函数”(sklearn.mixture.GaussianMixture
)的位置通过直接调用函数或通过Tensorflow的py_function
丢失数据。我感觉这可能不是您要寻找的100%。。。如果您只是尝试实现EM ..? Tensorflow中现有的高斯混合模型实现可能会有所帮助:
tf.contrib.factorization.gmm
的文档: https://www.tensorflow.org/api_docs/python/tf/contrib/factorization/gmm
在Tensorflow图中直接调用'numpy函数'的示例代码:
import numpy as np
np.set_printoptions(2)
import tensorflow as tf
from sklearn.mixture import GaussianMixture as GMM
def myfunc(x,istf=True):
#strip nans
if istf:
mask = ~tf.is_nan(x)
x = tf.boolean_mask(x,mask)
else:
ind=np.where(~np.isnan(x))
x = x[ind]
x = np.expand_dims(x,axis=-1)
gmm = GMM(n_components=2)
gmm.fit(x)
m0,m1 = gmm.means_[:,0]
return np.array([m0,m1])
# create data with nans
np.random.seed(42)
x = np.random.rand(5,28,1)
c = 5
x.ravel()[np.random.choice(x.size, c, replace=False)] = np.nan
# directly call "numpy function"
for ind in range(x.shape[0]):
val = myfunc(x[ind,:],istf=False)
print(val)
[0.7 0.26]
[0.15 0.72]
[0.77 0.2 ]
[0.65 0.23]
[0.35 0.87]
# initialization
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# create graph
X = tf.placeholder(tf.float32, [28,1])
Y = tf.py_function(myfunc,[X],[tf.float32],name='myfunc')
# call "numpy function" in tensorflow graph
for ind in range(x.shape[0]):
val = sess.run(Y, feed_dict={X: x[ind,:],})
print(val)
[array([0.29, 0.76], dtype=float32)]
[array([0.72, 0.15], dtype=float32)]
[array([0.77, 0.2 ], dtype=float32)]
[array([0.23, 0.65], dtype=float32)]
[array([0.35, 0.87], dtype=float32)]
答案 1 :(得分:0)
您可以将 numpy 函数转换为 tensorflow 函数,然后在会话内部调用一个简单的函数时可能不会产生问题。在 numpy 中创建一个 IOU 函数,然后通过 tf.numpy_function
here
def IOU(Pred, GT, NumClasses, ClassNames):
ClassIOU=np.zeros(NumClasses)#Vector that Contain IOU per class
ClassWeight=np.zeros(NumClasses)#Vector that Contain Number of pixel per class Predicted U Ground true (Union for this class)
for i in range(NumClasses): # Go over all classes
Intersection=np.float32(np.sum((Pred==GT)*(GT==i)))# Calculate class intersection
Union=np.sum(GT==i)+np.sum(Pred==i)-Intersection # Calculate class Union
if Union>0:
ClassIOU[i]=Intersection/Union# Calculate intesection over union
ClassWeight[i]=Union
# b/c we will only take the mean over classes that are actually present in the GT
present_classes = np.unique(GT)
mean_IOU = np.mean(ClassIOU[present_classes])
# append it in final results
ClassNames = np.append(ClassNames, 'Mean')
ClassIOU = np.append(ClassIOU, mean_IOU)
ClassWeight = np.append(ClassWeight, np.sum(ClassWeight))
return mean_IOU
# an now call as
NumClasses=6
ClassNames=['Background', 'Class_1', 'Class_1',
'Class_1 ', 'Class_1', 'Class_1 ']
x = tf.numpy_function(Strict_IOU, [y_pred, y_true, NumClasses, ClassNames],
tf.float64, name=None)