提取JSON字符串列中包含熊猫中多行和多列的部分

时间:2019-07-24 22:34:01

标签: python json regex python-3.x pandas

我有一个数据帧,其中parameters列是JSON,并且包含多个实际行和列:

input_data = pandas.DataFrame({'id':['0001','0002','0003'],
                               'parameters':["{'product':['book','cat','fish'],'person':['me','you']}",
                                             "'{'product':['book','cat'],'person':['me','you','us']}'",
                                             "'{'product':['apple','snake','rabbit','octopus'],'person':['them','you','us','we','they']}'"]})

...,我想从中提取以下数据帧:

product_data = pandas.DataFrame({'id':['0001','0001','0001','0002','0002','0003','0003','0003','0003'],
                                'product':['book','cat','fish','book','cat','apple','snake','rabbit','octopus']})


person_data = pandas.DataFrame({'id':['0001','0001','0002','0002','0002','0003','0003','0003','0003','0003'],
                                'person':['me','you','me','you','us','them','you','us','we','they']})

下面是我如何利用正则表达式将我带到那里。我怀疑这是最好的方法,但是就可以了:

for i in input_data.id.tolist():
    s = ''.join(input_data[input_data.id == i]['parameters'])
    product_string = re.search(r"product':(.*?),'person", str(s)).group(1)
    product_data = pandas.DataFrame(product_string[1:-1].split(','))
    person_string = re.search(r"person':(.*?)}", str(s)).group(1)
    person_data = pandas.DataFrame(person_string[1:-1].split(','))
    print("........")
    print(product_data)
    print("........")
    print(person_data)

我想学习一种更快,更优雅或有益于健康的解决方案,该方案可能会捕获意想不到的细微差别。

2 个答案:

答案 0 :(得分:2)

首先,使用str.get访问器设置您的产品和人员

input_data['products'] = input_data.parameters.str.get('product')

现在,对于熊猫>= 0.25.0 ,您可以使用explode方法

input_data.explode('products')

对于大熊猫<= 0.25.0,您可以参考to this thread


我假设您的数据帧中有字典,而不像这里公开的那样是 strings

如果您有字符串,可以总是

import ast
input_data.parameters.apply(ast.literal_eval)

使它们成为真正的词典。

答案 1 :(得分:0)

鉴于第2行和第3行中字符串的怪异结构,下面所需的最终输出是一种版本:

input_data = pd.DataFrame({'id':['0001','0002','0003'],
                               'parameters':["{'product':['book','cat','fish'],'person':['me','you']}",
                                             "'{'product':['book','cat'],'person':['me','you','us']}'",
                                             "'{'product':['apple','snake','rabbit','octopus'],'person':['them','you','us','we','they']}'"]})

input_data['parameters'] = input_data['parameters'].str.replace("'{", '{').str.replace("'{", '{').str.replace("}'", '}')
input_data = input_data.join(pd.DataFrame(input_data['parameters'].apply(literal_eval).values.tolist()))

获取对象的长度以供以后输入id

products_len = input_data['product'].apply(len).values
persons_len = input_data['person'].apply(len).values

将每个结果旋转为单独的df

## flatten x into a list of dictionaries
values = input_data['person'].values.flatten().tolist()
flat_results = [item for sublist in values for item in sublist]

## reinsert a and b
person_df = pd.DataFrame(flat_results, columns = ['person'])


## flatten x into a list of dictionaries
values = input_data['product'].values.flatten().tolist()
flat_results = [item for sublist in values for item in sublist]

## reinsert a and b
product_df = pd.DataFrame(flat_results, columns = ['product'])

附加ID:

## person
ids = input_data['id'].repeat(persons_len).reset_index(drop=True)
person_df = person_df.join(ids)

## product
ids = input_data['id'].repeat(products_len).reset_index(drop=True)
product_df = product_df.join(ids)

结果

person_df
Out[57]: 
  person    id
0     me  0001
1    you  0001
2     me  0002
3    you  0002
4     us  0002
5   them  0003
6    you  0003
7     us  0003
8     we  0003
9   they  0003

product_df
Out[58]: 
   product    id
0     book  0001
1      cat  0001
2     fish  0001
3     book  0002
4      cat  0002
5    apple  0003
6    snake  0003
7   rabbit  0003
8  octopus  0003