我需要找到一个go游戏板并使用python上的opencv2在照片上检测芯片,但是现在我在板检测方面遇到了问题,相同轮廓中有奇怪的点,我不明白如何删除它们。那就是我现在所拥有的:
from skimage import exposure
import numpy as np
import argparse
import imutils
import cv2
ap = argparse.ArgumentParser()
ap.add_argument("-r", required = True,
help = "ratio", type=int, default = 800)
args = vars(ap.parse_args())
img = cv2.imread('3.jpg') #upload image and change resolution
ratio = img.shape[0] / args["r"]
orig = img.copy()
img = imutils.resize(img, height = args["r"])
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.bilateralFilter(gray, 11, 17, 17)
edged = cv2.Canny(gray, 30, 200)
cnts= cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) #search contours and sorting them
cnts = imutils.grab_contours(cnts)
cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:10]
screenCnt = None
for cnt in cnts:
rect = cv2.minAreaRect(cnt) # try to fit each contour in rectangle
box = cv2.boxPoints(rect)
box = np.int0(box)
area = int(rect[1][0]*rect[1][1]) # calculating contour area
if (area > 300000):
print(area)
cv2.drawContours(img, cnt, -1, (255, 0, 0), 4) #dots in contour
hull = cv2.convexHull(cnt) # calculating convex hull
cv2.drawContours(img, [hull], -1, (0, 0, 255), 3)
cv2.imshow("death", img)
cv2.waitKey(0)
来源
结果
答案 0 :(得分:5)
这是一种检测棋盘的方法
阈值
找到轮廓,然后使用cv2.contourArea()
和最小阈值区域进行过滤。另外,使用轮廓近似作为cv2.approxPolyDP()
的第二个滤波器。本质上,如果轮廓具有四个顶点,则它必须是正方形或矩形(板)。
我们还可以提取电路板的边框并将其放在蒙版上
最后,如果我们想获得电路板的俯视图,则可以执行透视变换
import cv2
import numpy as np
def perspective_transform(image, corners):
def order_corner_points(corners):
# Separate corners into individual points
# Index 0 - top-right
# 1 - top-left
# 2 - bottom-left
# 3 - bottom-right
corners = [(corner[0][0], corner[0][1]) for corner in corners]
top_r, top_l, bottom_l, bottom_r = corners[0], corners[1], corners[2], corners[3]
return (top_l, top_r, bottom_r, bottom_l)
# Order points in clockwise order
ordered_corners = order_corner_points(corners)
top_l, top_r, bottom_r, bottom_l = ordered_corners
# Determine width of new image which is the max distance between
# (bottom right and bottom left) or (top right and top left) x-coordinates
width_A = np.sqrt(((bottom_r[0] - bottom_l[0]) ** 2) + ((bottom_r[1] - bottom_l[1]) ** 2))
width_B = np.sqrt(((top_r[0] - top_l[0]) ** 2) + ((top_r[1] - top_l[1]) ** 2))
width = max(int(width_A), int(width_B))
# Determine height of new image which is the max distance between
# (top right and bottom right) or (top left and bottom left) y-coordinates
height_A = np.sqrt(((top_r[0] - bottom_r[0]) ** 2) + ((top_r[1] - bottom_r[1]) ** 2))
height_B = np.sqrt(((top_l[0] - bottom_l[0]) ** 2) + ((top_l[1] - bottom_l[1]) ** 2))
height = max(int(height_A), int(height_B))
# Construct new points to obtain top-down view of image in
# top_r, top_l, bottom_l, bottom_r order
dimensions = np.array([[0, 0], [width - 1, 0], [width - 1, height - 1],
[0, height - 1]], dtype = "float32")
# Convert to Numpy format
ordered_corners = np.array(ordered_corners, dtype="float32")
# Find perspective transform matrix
matrix = cv2.getPerspectiveTransform(ordered_corners, dimensions)
# Return the transformed image
return cv2.warpPerspective(image, matrix, (width, height))
image = cv2.imread('1.jpg')
original = image.copy()
blur = cv2.bilateralFilter(image,9,75,75)
gray = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray,40,255, cv2.THRESH_BINARY_INV)[1]
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
mask = np.zeros(image.shape, dtype=np.uint8)
for c in cnts:
area = cv2.contourArea(c)
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.015 * peri, True)
if area > 150000 and len(approx) == 4:
cv2.drawContours(image,[c], 0, (36,255,12), 3)
cv2.drawContours(mask,[c], 0, (255,255,255), -1)
transformed = perspective_transform(original, approx)
mask = cv2.bitwise_and(mask, original)
cv2.imshow('thresh', thresh)
cv2.imshow('image', image)
cv2.imshow('mask', mask)
cv2.imshow('transformed', transformed)
cv2.waitKey()
答案 1 :(得分:2)
我还从事棋盘检测的类似任务。我使用了两种不同的方法。第一个类似于nathancy的答案,所以我认为我不需要张贴那个,第二个是基于模板的方法(我使用了SIFT)。这是一个示例:
代码:
import numpy as np
import cv2
from matplotlib import pyplot as plt
import os
MIN_MATCH_COUNT = 5
template_image = cv2.imread('go_board_template.png')
template_image_gray = cv2.cvtColor(template_image, cv2.COLOR_BGR2GRAY)
# Initiate SIFT detector
#sift = cv2.SIFT()
sift = cv2.xfeatures2d.SIFT_create()
# find the keypoints and descriptors with SIFT in template image
kp_template, des_template = sift.detectAndCompute(template_image_gray, None)
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
img = cv2.imread("1.jpg") # use second parameter 0 for auto gray conversion?
# convert image to gray
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# find the keypoints and descriptors with SIFT in query image
kp_img, des_img = sift.detectAndCompute(img, None)
# get image dimension info
img_height, img_width = img_gray.shape
print("Image height:{}, image width:{}".format(img_height, img_width))
matches = flann.knnMatch(des_template,des_img,k=2)
# store all the good matches as per Lowe's ratio test.
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp_template[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp_img[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
h,w = template_image_gray.shape
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
dst = cv2.perspectiveTransform(pts,M)
img_board = img.copy()
cv2.polylines(img_board,[np.int32(dst)],True,255,10, cv2.LINE_AA)
"""
draw_params = dict(matchColor = (0,255,0), # draw matches in green color
singlePointColor = None,
matchesMask = matchesMask, # draw only inliers
flags = 2)
img3 = cv2.drawMatches(template_image,kp_template,img,kp_img,good,None,**draw_params)
"""
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.show()
# get axis aligned bounding box for chessboard in input image
x,y,w,h = cv2.boundingRect(dst)
img_crop = img.copy()
cv2.rectangle(img_crop,(x,y),(x+w,y+h),(0,0,255),5)
# draw OBB and AABB
fig = plt.figure()
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
ax1.axis("off")
ax2.axis("off")
ax1.set_title('OBB')
ax2.set_title('AABB')
ax1.imshow(cv2.cvtColor(img_board, cv2.COLOR_BGR2RGB))
ax2.imshow(cv2.cvtColor(img_crop, cv2.COLOR_BGR2RGB))
plt.show()
# crop board
cropped_img = img[y:y+h, x:x+w].copy()
plt.imshow(cv2.cvtColor(cropped_img, cv2.COLOR_BGR2RGB))
plt.show()
# convert cropped area to gray
cropped_img_gray = cv2.cvtColor(cropped_img, cv2.COLOR_BGR2GRAY)
plt.imshow(cropped_img_gray, cmap="gray")
plt.show()
else:
print("Not enough match")