我想将具有相同(np.float)类型列的NumPy结构化数组转换为Numpy 1.16.0中的非结构化数组。
以前我是这样的:
array = np.ones((100,), dtype=[('user', np.object), ('item', np.float), ('value', np.float)])
array[['item','value']].view((np.float, 2))
在1.16.0中,structured_to_unstructured
函数出现在numpy.lib.recfunctions
。
但是对于来自带有对象列的数组的视图,新视图structured_to_unstructured
和旧视图都会引发TypeError:
Cannot change data-type for object array.
对于结构化数组中完全没有对象列的视图,它可以正常工作,但是如果视图仅包含由包含对象字段的数组构成的数字列,则崩溃。
答案 0 :(得分:0)
在1.16版本中,多字段视图的处理发生了重大变化。您需要使用rf.repack_fields
来获得更早的行为。
In [277]: import numpy.lib.recfunctions as rf
In [287]: arr = np.ones(3, dtype='O,f,f')
In [288]: arr
Out[288]:
array([(1, 1., 1.), (1, 1., 1.), (1, 1., 1.)],
dtype=[('f0', 'O'), ('f1', '<f4'), ('f2', '<f4')])
In [289]: rf.structured_to_unstructured(arr[['f1','f2']])
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-289-8700aa9aacb4> in <module>
----> 1 rf.structured_to_unstructured(arr[['f1','f2']])
/usr/local/lib/python3.6/dist-packages/numpy/lib/recfunctions.py in structured_to_unstructured(arr, dtype, copy, casting)
969 with suppress_warnings() as sup: # until 1.16 (gh-12447)
970 sup.filter(FutureWarning, "Numpy has detected")
--> 971 arr = arr.view(flattened_fields)
972
973 # next cast to a packed format with all fields converted to new dtype
/usr/local/lib/python3.6/dist-packages/numpy/core/_internal.py in _view_is_safe(oldtype, newtype)
492
493 if newtype.hasobject or oldtype.hasobject:
--> 494 raise TypeError("Cannot change data-type for object array.")
495 return
496
TypeError: Cannot change data-type for object array.
转换前重新包装:
In [290]: rf.structured_to_unstructured(rf.repack_fields(arr[['f1','f2']]))
Out[290]:
array([[1., 1.],
[1., 1.],
[1., 1.]], dtype=float32)
多字段视图保留基础数据布局。注意在此显示中使用offsets
。对象字段仍然存在,只是不显示。
In [291]: arr[['f1','f2']]
Out[291]:
array([(1., 1.), (1., 1.), (1., 1.)],
dtype={'names':['f1','f2'], 'formats':['<f4','<f4'], 'offsets':[8,12], 'itemsize':16})
repack
制作的副本不包含对象字段:
In [292]: rf.repack_fields(arr[['f1','f2']])
Out[292]: array([(1., 1.), (1., 1.), (1., 1.)], dtype=[('f1', '<f4'), ('f2', '<f4')])
即使所有字段都是浮点的,view
方法也存在问题:
In [301]: arr = np.ones(3, dtype='f,f,f')
In [302]: arr[['f1','f2']].view(('f',2))
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-302-68433a44bcfe> in <module>
----> 1 arr[['f1','f2']].view(('f',2))
ValueError: Changing the dtype to a subarray type is only supported if the total itemsize is unchanged
In [303]: arr[['f1','f2']]
Out[303]:
array([(1., 1.), (1., 1.), (1., 1.)],
dtype={'names':['f1','f2'], 'formats':['<f4','<f4'], 'offsets':[4,8], 'itemsize':12})
In [304]: rf.repack_fields(arr[['f1','f2']]).view(('f',2))
Out[304]:
array([[1., 1.],
[1., 1.],
[1., 1.]], dtype=float32)