我有5100张图片用于训练,处理时显示错误:ValueError:输入数组的样本数应与目标数组相同。找到了5100个输入样本和1700个目标样本。
我正在加载数据并使用'pickle'保存
'''python 导入操作系统 导入cv2 将numpy导入为np 随机导入 进口泡菜
Data_preprocessing类
'Data preprocessing before goes to ML'
# Train by data list initilization
training_data = []
def __init__(self, datadir, categories, img_size):
Data_preprocessing.img_size = img_size
Data_preprocessing.datadir = datadir
Data_preprocessing.categories = categories
def Create_training_data(self):
for category in Data_preprocessing.categories:
# path to cats or dogs dir
path = os.path.join(Data_preprocessing.datadir, category)
class_num = Data_preprocessing.categories.index(category)
# After having the directory for images
# Started to read image by using OpenCv and directly convert it to GRAYSCALE
for img in os.listdir(path):
try:
img_read = cv2.imread(os.path.join(path, img))
new_array = cv2.resize(img_read, (Data_preprocessing.img_size, Data_preprocessing.img_size))
Data_preprocessing.training_data.append([new_array, class_num])
except Exception as e:
pass
self.Saving_processed_data()
def Saving_processed_data(self):
random.shuffle(Data_preprocessing.training_data)
x = []
y = []
for features, label in Data_preprocessing.training_data:
x.append(features)
y.append(label)
x = np.array(x).reshape(-1, Data_preprocessing.img_size, Data_preprocessing.img_size, 1)
# Saving data by using "pickle"
pickle_out = open("x.pickle", "wb")
pickle.dump(x, pickle_out)
pickle_out.close()
pickle_out = open("y.pickle", "wb")
pickle.dump(y, pickle_out)
pickle_out.close()
类别= [“ A”,“ B”,“ C”,“ D”,“ E”,“ F”,“ G”,“ H”,“ I”,“ K”,“ L”, “ M”,“ N”,“ O”,“ P”,“ Q”,“ R”,“ S”,“ T”,“ U”,“ V”,“ W”,“ X”,“ Y “,” Z“] data_preprocessing = Data_preprocessing(“ ADSL_training”,类别50) data_preprocessing.Create_training_data()'''
'''python 导入cv2 将tensorflow作为tf导入 从tensorflow.keras.models导入顺序 从tensorflow.keras.layers导入Dense,Dropout,Activation,Flatten,Conv2D,MaxPooling2D 进口泡菜
learning_model类:
pass
def TrainModel(self):
self.x = pickle.load(open("x.pickle", "rb"))
self.y = pickle.load(open("y.pickle", "rb"))
self.x = self.x/255.0
model = Sequential()
model.add(Conv2D(128, (3, 3), input_shape = self.x.shape[1:]))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, (3, 3)))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Dense(25))
model.add(Activation('softmax'))
model.compile(loss="sparse_categorical_crossentropy",
optimizer="adam",
metrics=['accuracy'])
model.fit(self.x, self.y, batch_size=10, epochs=5)
model.save("64x3-CNN-ASL4.model")
trained_model =学习模型() training_model.TrainModel() '''
我希望它在训练模型时不会出现任何错误。