我在这里按照本教程进行图像分类。 链接:[Keras图像分类] [1]
我将代码扩展为8个类,但是我收到了以下错误:
ValueError: Input arrays should have the same number of samples as target arrays. Found 32 input samples and 128 target samples
我的火车顶级型号代码如下:
def train_top_model():
train_data = np.load(open('bottleneck_features_train', 'rb'))
train_labels = np.array([0] * (nb_train_samples // 8) + [1] * (nb_train_samples // 8) + [2] * (nb_train_samples // 8) + [3] * (nb_train_samples // 8) + [4] * (nb_train_samples // 8) + [5] * (nb_train_samples // 8) + [6] * (nb_train_samples // 8) + [7] * (nb_train_samples // 8))
validation_data = np.load(open('bottleneck_features_validation', 'rb'))
validation_labels = np.array([0] * (nb_train_samples // 8) + [1] * (nb_train_samples // 8) + [2] * (nb_train_samples // 8) + [3] * (nb_train_samples // 8) + [4] * (nb_train_samples // 8) + [5] * (nb_train_samples // 8) + [6] * (nb_train_samples // 8) + [7] * (nb_train_samples // 8))
train_labels = keras.utils.to_categorical(train_labels, num_classes = 8)
validation_labels = keras.utils.to_categorical(validation_labels, num_classes = 8)
model = Sequential()
model.add(Flatten(input_shape=train_data.shape[1:]))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(8, activation='softmax'))
sgd = SGD(lr=1e-2, decay=0.00371, momentum=0.9, nesterov=False)
model.compile(optimizer=sgd,
loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(train_data, train_labels,
epochs=epochs,
batch_size=batch_size,
validation_data=(validation_data, validation_labels))
model.save_weights(top_model_weights_path)
我认为错误试图说的是输入应该有128个样本,但它只有32个。我不确定原因,因为我也得到了这个Found 128 images belonging to 8 classes.
我认为它表明它成功获得了所有128张图像。
有人可以帮忙吗?非常感谢!
答案 0 :(得分:1)
Keras抱怨您在验证集中有32张图片,而您的验证标签包含128个元素,因为您原本忘记将nb_train_samples
更改为nb_validation_samples
,因此要修复它,请初始化验证标签nb_validation_samples
。