我正在尝试在AWS Sagemaker上训练TensorFlow模型。 我为此创建了带有外部库的容器(在Amazon SageMaker中使用您自己的算法或模型)。
我们使用TensorFlow API进行培训
from sagemaker.tensorflow import TensorFlow
estimator = TensorFlow(
entry_point="entry.py", # entry script
role=role,
framework_version="1.13.0",
py_version='py3',
hyperparameters=hyperparameters,
train_instance_count=1, # "The number of GPUs instances to use"
train_instance_type=train_instance_type,
image_name=my_image
)
estimator.fit({'train': train_s3, 'eval': eval_s3})
并出现错误:
09:06:46
2019-07-23 09:06:45,463 INFO - root - running container entrypoint
09:06:46
2019-07-23 09:06:45,463 INFO - root - starting train task
09:06:46
2019-07-23 09:06:45,476 INFO - container_support.training - Training starting
09:06:46
2019-07-23 09:06:45,479 ERROR - container_support.training - uncaught exception during training: No module named 'tf_container'
09:06:46
Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/container_support/environment.py", line 136, in load_framework return importlib.import_module('mxnet_container') File "/usr/lib/python3.6/importlib/__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 994, in _gcd_i
09:06:46
ModuleNotFoundError: No module named 'mxnet_container'
09:06:46
During handling of the above exception, another exception occurred:
09:06:46
Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/container_support/training.py", line 35, in start fw = TrainingEnvironment.load_framework() File "/usr/local/lib/python3.6/dist-packages/container_support/environment.py", line 138, in load_framework return importlib.import_module('tf_container') File "/usr/lib/python3.6/importlib/__init__.py", line 126,
09:06:46
ModuleNotFoundError: No module named 'tf_container'
我该怎么做才能解决此问题?我该如何调试这种情况?
答案 0 :(得分:1)
我猜测您使用的是自己的TF容器,而不是https://github.com/aws/sagemaker-tensorflow-container的SageMaker容器
如果是这种情况,则您的容器缺少使用TensorFlow估算器(“ tf_container”软件包)所需的支持代码。
解决方案是从SageMaker容器开始,对其进行自定义,将其推回ECR,然后将图像名称通过'image_name'参数传递给SageMaker估算器。