我为IMU使用默认的AHRS固件代码,但总是出错,因为尚未启动另一个选项卡上的所有功能。但是,如果我从另一台PC上传代码,则可能会也不会出现错误。我对于库有什么遗忘吗,还是在专门为我的Arduino应用程序之前需要做的事情
#include <SparkFunMPU9250-DMP.h>
//#define SerialPort Serial //Use onboard RX/TX pins
#define SerialPort SerialUSB //Use USB for RX/TX
MPU9250_DMP imu;
// OUTPUT OPTIONS
/*****************************************************************/
// Set your serial port baud rate used to send out data here!
#define OUTPUT__BAUD_RATE 57600
// Sensor data output interval in milliseconds
// This may not work, if faster than 20ms (=50Hz)
// Code is tuned for 20ms, so better leave it like that
#define OUTPUT__DATA_INTERVAL 20 // in milliseconds
// Output mode definitions (do not change)
#define OUTPUT__MODE_CALIBRATE_SENSORS 0 // Outputs sensor min/max values as text for manual calibration
#define OUTPUT__MODE_ANGLES 1 // Outputs yaw/pitch/roll in degrees
#define OUTPUT__MODE_SENSORS_CALIB 2 // Outputs calibrated sensor values for all 9 axes
#define OUTPUT__MODE_SENSORS_RAW 3 // Outputs raw (uncalibrated) sensor values for all 9 axes
#define OUTPUT__MODE_SENSORS_BOTH 4 // Outputs calibrated AND raw sensor values for all 9 axes
// Output format definitions (do not change)
#define OUTPUT__FORMAT_TEXT 0 // Outputs data as text
#define OUTPUT__FORMAT_BINARY 1 // Outputs data as binary float
// Select your startup output mode and format here!
int output_mode = 1; // OUTPUT__MODE_ANGLES;
int output_format = OUTPUT__FORMAT_TEXT;
// Select if serial continuous streaming output is enabled per default on startup.
#define OUTPUT__STARTUP_STREAM_ON true // true or false
// If set true, an error message will be output if we fail to read sensor data.
// Message format: "!ERR: reading <sensor>", followed by "\r\n".
boolean output_errors = false; // true or false
// Bluetooth
// You can set this to true, if you have a Rovering Networks Bluetooth Module attached.
// The connect/disconnect message prefix of the module has to be set to "#".
// (Refer to manual, it can be set like this: SO,#)
// When using this, streaming output will only be enabled as long as we're connected. That way
// receiver and sender are synchronzed easily just by connecting/disconnecting.
// It is not necessary to set this! It just makes life easier when writing code for
// the receiving side. The Processing test sketch also works without setting this.
// NOTE: When using this, OUTPUT__STARTUP_STREAM_ON has no effect!
#define OUTPUT__HAS_RN_BLUETOOTH false // true or false
// SENSOR CALIBRATION
/*****************************************************************/
// How to calibrate? Read the tutorial at http://dev.qu.tu-berlin.de/projects/sf-razor-9dof-ahrs
// Put MIN/MAX and OFFSET readings for your board here!
// Accelerometer
// "accel x,y,z (min/max) = X_MIN/X_MAX Y_MIN/Y_MAX Z_MIN/Z_MAX"
#define ACCEL_X_MIN ((float) -17528.00)
#define ACCEL_X_MAX ((float) 17272.00)
#define ACCEL_Y_MIN ((float) -16752.00)
#define ACCEL_Y_MAX ((float) 17384.00)
#define ACCEL_Z_MIN ((float) -17440.00)
#define ACCEL_Z_MAX ((float) 17592.00)
// Magnetometer (standard calibration mode)
// "magn x,y,z (min/max) = X_MIN/X_MAX Y_MIN/Y_MAX Z_MIN/Z_MAX"
#define MAGN_X_MIN ((float) -57.61)
#define MAGN_X_MAX ((float) 22.06)
#define MAGN_Y_MIN ((float) -3.00)
#define MAGN_Y_MAX ((float) 74.42)
#define MAGN_Z_MIN ((float) -42.46)
#define MAGN_Z_MAX ((float) 39.91)
// Magnetometer (extended calibration mode)
// Uncommend to use extended magnetometer calibration (compensates hard & soft iron errors)
// Use your own calibration values! The values below were for my board!
#define CALIBRATION__MAGN_USE_EXTENDED true
const float magn_ellipsoid_center[3] = { 220.450, -86.4332, -212.508 };
const float magn_ellipsoid_transform[3][3] = { { 0.980092, -0.00580039, -0.0175808 },{ -0.00580039, 0.964793, -0.00368069 },{ -0.0175808, -0.00368069, 0.984412 } };
// Gyroscope
// "gyro x,y,z (current/average) = .../OFFSET_X .../OFFSET_Y .../OFFSET_Z
#define GYRO_AVERAGE_OFFSET_X ((float) -34.74)
#define GYRO_AVERAGE_OFFSET_Y ((float) -24.41)
#define GYRO_AVERAGE_OFFSET_Z ((float) 4.27)
// DEBUG OPTIONS
/*****************************************************************/
// When set to true, gyro drift correction will not be applied
#define DEBUG__NO_DRIFT_CORRECTION false
// Print elapsed time after each I/O loop
#define DEBUG__PRINT_LOOP_TIME false
/*****************************************************************/
/****************** END OF USER SETUP AREA! *********************/
/*****************************************************************/
#include <Wire.h> //this might not be needed but I was getting errors at one point for not having it
#define MPU9250_INT_PIN 4
#define GRAVITY 256.0f // "1G reference" used for DCM filter and accelerometer calibration
// Sensor calibration scale and offset values
#define ACCEL_X_OFFSET ((ACCEL_X_MIN + ACCEL_X_MAX) / 2.0f)
#define ACCEL_Y_OFFSET ((ACCEL_Y_MIN + ACCEL_Y_MAX) / 2.0f)
#define ACCEL_Z_OFFSET ((ACCEL_Z_MIN + ACCEL_Z_MAX) / 2.0f)
#define ACCEL_X_SCALE (GRAVITY / (ACCEL_X_MAX - ACCEL_X_OFFSET))
#define ACCEL_Y_SCALE (GRAVITY / (ACCEL_Y_MAX - ACCEL_Y_OFFSET))
#define ACCEL_Z_SCALE (GRAVITY / (ACCEL_Z_MAX - ACCEL_Z_OFFSET))
#define MAGN_X_OFFSET ((MAGN_X_MIN + MAGN_X_MAX) / 2.0f)
#define MAGN_Y_OFFSET ((MAGN_Y_MIN + MAGN_Y_MAX) / 2.0f)
#define MAGN_Z_OFFSET ((MAGN_Z_MIN + MAGN_Z_MAX) / 2.0f)
#define MAGN_X_SCALE (100.0f / (MAGN_X_MAX - MAGN_X_OFFSET))
#define MAGN_Y_SCALE (100.0f / (MAGN_Y_MAX - MAGN_Y_OFFSET))
#define MAGN_Z_SCALE (100.0f / (MAGN_Z_MAX - MAGN_Z_OFFSET))
// Gain for gyroscope
#define GYRO_GAIN 0.06957 // Same gain on all axes
#define GYRO_SCALED_RAD(x) (x * TO_RAD(GYRO_GAIN)) // Calculate the scaled gyro readings in radians per second
// DCM parameters
#define Kp_ROLLPITCH 0.02f
#define Ki_ROLLPITCH 0.00002f
#define Kp_YAW 0.01f
#define Ki_YAW .00001f
// Stuff
#define STATUS_LED_PIN 13 // Pin number of status LED
#define SD_CHIP_SELECT_PIN 38
#define TO_RAD(x) (x * 0.01745329252) // *pi/180
#define TO_DEG(x) (x * 57.2957795131) // *180/pi
// Moving average filter
const int numReadings = 60;
const int numReadings2 = 5;
int readIndex = 0; // the index of the current reading
int readIndex2 = 0;
/******* Heading Filter Values ************/
float total_MAG_Heading = 0.0;
float average_MAG_Heading = 0.0;
float MAG_Heading_readings[numReadings];
/******* Roll and Pitch Filter Values ************/
float total_roll = 0.0;
float average_roll = 0.0;
float roll_readings[numReadings2];
float total_pitch = 0.0;
float average_pitch = 0.0;
float pitch_readings[numReadings2];
// Sensor variables
float accel[3]; // Actually stores the NEGATED acceleration (equals gravity, if board not moving).
float accel_min[3];
float accel_max[3];
float magnetom[3];
float magnetom_min[3];
float magnetom_max[3];
float magnetom_tmp[3];
float gyro[3];
float gyro_average[3];
int gyro_num_samples = 0;
char values_param;
char format_param;
byte id[2];
char output_param;
// DCM variables
float MAG;
float MAG_Heading;
float heading_magnitude;
float Accel_Vector[3]= {0, 0, 0}; // Store the acceleration in a vector
float Gyro_Vector[3]= {0, 0, 0}; // Store the gyros turn rate in a vector
float Omega_Vector[3]= {0, 0, 0}; // Corrected Gyro_Vector data
float Omega_P[3]= {0, 0, 0}; // Omega Proportional correction
float Omega_I[3]= {0, 0, 0}; // Omega Integrator
float Omega[3]= {0, 0, 0};
float errorRollPitch[3] = {0, 0, 0};
float errorYaw[3] = {0, 0, 0};
float DCM_Matrix[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
float Update_Matrix[3][3] = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}};
float Temporary_Matrix[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
// Euler angles
float yaw;
float pitch;
float roll;
char command;
char read;
// DCM timing in the main loop
unsigned long timestamp;
unsigned long timestamp_old;
float G_Dt; // Integration time for DCM algorithm
// More output-state variables
boolean output_stream_on;
boolean output_single_on;
int curr_calibration_sensor = 0;
boolean reset_calibration_session_flag = true;
int num_accel_errors = 0;
int num_magn_errors = 0;
int num_gyro_errors = 0;
void read_sensors() {
imu.update(UPDATE_ACCEL | UPDATE_GYRO | UPDATE_COMPASS);
Read_Gyro(); // Read gyroscope
Read_Accel(); // Read accelerometer
Read_Magn(); // Read magnetometer
}
// Read every sensor and record a time stamp
// Init DCM with unfiltered orientation
// TODO re-init global vars?
void reset_sensor_fusion() {
float temp1[3];
float temp2[3];
float xAxis[] = {1.0f, 0.0f, 0.0f};
read_sensors();
timestamp = millis();
// GET PITCH
// Using y-z-plane-component/x-component of gravity vector
pitch = -atan2(accel[0], sqrt(accel[1] * accel[1] + accel[2] * accel[2]));
// GET ROLL
// Compensate pitch of gravity vector
Vector_Cross_Product(temp1, accel, xAxis);
Vector_Cross_Product(temp2, xAxis, temp1);
// Normally using x-z-plane-component/y-component of compensated gravity vector
//roll = atan2(accel[1], sqrt(accel[0] * accel[0] + accel[2] * accel[2]));
// Since we compensated for pitch, x-z-plane-component equals z-component:
roll = atan2(temp2[1], temp2[2]);
// GET YAW
Compass_Heading();
//yaw = MAG_Heading;
yaw = average_MAG_Heading;
// Init rotation matrix
init_rotation_matrix(DCM_Matrix, yaw, pitch, roll);
}
// Apply calibration to raw sensor readings
void compensate_sensor_errors() {
// Compensate accelerometer error
accel[0] = (accel[0] - ACCEL_X_OFFSET) * ACCEL_X_SCALE;
accel[1] = (accel[1] - ACCEL_Y_OFFSET) * ACCEL_Y_SCALE;
accel[2] = (accel[2] - ACCEL_Z_OFFSET) * ACCEL_Z_SCALE;
// Compensate magnetometer error
#if CALIBRATION__MAGN_USE_EXTENDED == true
for (int i = 0; i < 3; i++)
magnetom_tmp[i] = magnetom[i] - magn_ellipsoid_center[i];
Matrix_Vector_Multiply(magn_ellipsoid_transform, magnetom_tmp, magnetom);
#else
magnetom[0] = (magnetom[0] - MAGN_X_OFFSET) * MAGN_X_SCALE;
magnetom[1] = (magnetom[1] - MAGN_Y_OFFSET) * MAGN_Y_SCALE;
magnetom[2] = (magnetom[2] - MAGN_Z_OFFSET) * MAGN_Z_SCALE;
#endif
// Compensate gyroscope error
gyro[0] -= GYRO_AVERAGE_OFFSET_X;
gyro[1] -= GYRO_AVERAGE_OFFSET_Y;
gyro[2] -= GYRO_AVERAGE_OFFSET_Z;
}
// Reset calibration session if reset_calibration_session_flag is set
void check_reset_calibration_session()
{
// Raw sensor values have to be read already, but no error compensation applied
// Reset this calibration session?
if (!reset_calibration_session_flag) return;
// Reset acc and mag calibration variables
for (int i = 0; i < 3; i++) {
accel_min[i] = accel_max[i] = accel[i];
magnetom_min[i] = magnetom_max[i] = magnetom[i];
}
// Reset gyro calibration variables
gyro_num_samples = 0; // Reset gyro calibration averaging
gyro_average[0] = gyro_average[1] = gyro_average[2] = 0.0f;
reset_calibration_session_flag = false;
}
void turn_output_stream_on()
{
output_stream_on = true;
digitalWrite(STATUS_LED_PIN, HIGH);
}
void turn_output_stream_off()
{
output_stream_on = false;
digitalWrite(STATUS_LED_PIN, LOW);
}
// Blocks until another byte is available on serial port
char readChar()
{
while (SerialPort.available() < 1) { } // Block
return SerialPort.read();
}
void setup()
{
pinMode (STATUS_LED_PIN, OUTPUT);
digitalWrite(STATUS_LED_PIN, LOW);
pinMode(MPU9250_INT_PIN, INPUT_PULLUP);
// Init serial output
SerialPort.begin(OUTPUT__BAUD_RATE);
if (imu.begin() != INV_SUCCESS)
{
while (1)
{
SerialPort.println("Check connections, and try again.");
SerialPort.println();
delay(5000);
}
}
imu.setSensors(INV_XYZ_GYRO | INV_XYZ_ACCEL | INV_XYZ_COMPASS);
// Use setGyroFSR() and setAccelFSR() to configure the
// gyroscope and accelerometer full scale ranges.
// Gyro options are +/- 250, 500, 1000, or 2000 dps
imu.setGyroFSR(2000); // Set gyro to 2000 dps
// Accel options are +/- 2, 4, 8, or 16 g
imu.setAccelFSR(2); // Set accel to +/-2g
// Note: the MPU-9250's magnetometer FSR is set at
// +/- 4912 uT (micro-tesla's)
// setLPF() can be used to set the digital low-pass filter
// of the accelerometer and gyroscope.
// Can be any of the following: 188, 98, 42, 20, 10, 5
// (values are in Hz).
imu.setLPF(188); // Set LPF corner frequency to 5Hz
// The sample rate of the accel/gyro can be set using
// setSampleRate. Acceptable values range from 4Hz to 1kHz
imu.setSampleRate(1000); // Set sample rate to 10Hz
// Likewise, the compass (magnetometer) sample rate can be
// set using the setCompassSampleRate() function.
// This value can range between: 1-100Hz
imu.setCompassSampleRate(100); // Set mag rate to 10Hz
imu.dmpBegin(DMP_FEATURE_SEND_RAW_ACCEL | DMP_FEATURE_GYRO_CAL | DMP_FEATURE_6X_LP_QUAT | DMP_FEATURE_SEND_CAL_GYRO, 200);
// Init sensors
delay(50); // Give sensors enough time to start
//I2C_Init();
//Accel_Init();
//Magn_Init();
//Gyro_Init();
imu.update(UPDATE_ACCEL | UPDATE_GYRO | UPDATE_COMPASS);
imu.dmpUpdateFifo();
// Read sensors, init DCM algorithm
delay(20); // Give sensors enough time to collect data
reset_sensor_fusion();
//SerialPort.println();
//SerialPort.println("******** IMU Setup Complete **************");
}
// Main loop
void loop()
{
// Read incoming control messages
//test();
if (SerialPort.available() >= 2)
{
if (SerialPort.read() == '#') // Start of new control message
{
int command = SerialPort.read(); // Commands
if (command == 'f') // request one output _f_rame
output_single_on = true;
else if (command == 's') // _s_ynch request
{
// Read ID
byte id[2];
id[0] = readChar();
id[1] = readChar();
// Reply with synch message
SerialPort.print("#SYNCH");
SerialPort.write(id, 2);
SerialPort.println();
}
else if (command == 'o') // Set _o_utput mode
{
char output_param = readChar();
if (output_param == 'n') // Calibrate _n_ext sensor
{
curr_calibration_sensor = (curr_calibration_sensor + 1) % 3;
reset_calibration_session_flag = true;
}
else if (output_param == 't') // Output angles as _t_ext
{
output_mode = OUTPUT__MODE_ANGLES;
output_format = OUTPUT__FORMAT_TEXT;
}
else if (output_param == 'b') // Output angles in _b_inary format
{
output_mode = OUTPUT__MODE_ANGLES;
output_format = OUTPUT__FORMAT_BINARY;
}
else if (output_param == 'c') // Go to _c_alibration mode
{
output_mode = OUTPUT__MODE_CALIBRATE_SENSORS;
reset_calibration_session_flag = true;
}
else if (output_param == 's') // Output _s_ensor values
{
char values_param = readChar();
char format_param = readChar();
if (values_param == 'r') // Output _r_aw sensor values
output_mode = OUTPUT__MODE_SENSORS_RAW;
else if (values_param == 'c') // Output _c_alibrated sensor values
output_mode = OUTPUT__MODE_SENSORS_CALIB;
else if (values_param == 'b') // Output _b_oth sensor values (raw and calibrated)
output_mode = OUTPUT__MODE_SENSORS_BOTH;
if (format_param == 't') // Output values as _t_text
output_format = OUTPUT__FORMAT_TEXT;
else if (format_param == 'b') // Output values in _b_inary format
output_format = OUTPUT__FORMAT_BINARY;
}
else if (output_param == '0') // Disable continuous streaming output
{
turn_output_stream_off();
reset_calibration_session_flag = true;
}
else if (output_param == '1') // Enable continuous streaming output
{
reset_calibration_session_flag = true;
turn_output_stream_on();
}
else if (output_param == 'e') // _e_rror output settings
{
char error_param = readChar();
if (error_param == '0') output_errors = false;
else if (error_param == '1') output_errors = true;
else if (error_param == 'c') // get error count
{
SerialPort.print("#AMG-ERR:");
SerialPort.print(num_accel_errors); SerialPort.print(",");
SerialPort.print(num_magn_errors); SerialPort.print(",");
SerialPort.println(num_gyro_errors);
}
}
}
#if OUTPUT__HAS_RN_BLUETOOTH == true
// Read messages from bluetooth module
// For this to work, the connect/disconnect message prefix of the module has to be set to "#".
else if (command == 'C') // Bluetooth "#CONNECT" message (does the same as "#o1")
turn_output_stream_on();
else if (command == 'D') // Bluetooth "#DISCONNECT" message (does the same as "#o0")
turn_output_stream_off();
#endif // OUTPUT__HAS_RN_BLUETOOTH == true
}
else
{
} // Skip character
}
// Time to read the sensors again?
if ((millis() - timestamp) >= OUTPUT__DATA_INTERVAL)
{
timestamp_old = timestamp;
timestamp = millis();
if (timestamp > timestamp_old)
G_Dt = (float)(timestamp - timestamp_old) / 1000.0f; // Real time of loop run. We use this on the DCM algorithm (gyro integration time)
else G_Dt = 0;
// Update sensor readings
read_sensors();
if (output_mode == OUTPUT__MODE_CALIBRATE_SENSORS) // We're in calibration mode
{
check_reset_calibration_session(); // Check if this session needs a reset
if (output_stream_on || output_single_on) output_calibration(curr_calibration_sensor);
}
else if (output_mode == OUTPUT__MODE_ANGLES) // Output angles
{
// Apply sensor calibration
compensate_sensor_errors();
// Run DCM algorithm
Compass_Heading(); // Calculate magnetic heading
Matrix_update();
Normalize();
Drift_correction();
Euler_angles();
if (output_stream_on || output_single_on) output_angles();
}
else // Output sensor values
{
if (output_stream_on || output_single_on) output_sensors();
}
output_single_on = false;
#if DEBUG__PRINT_LOOP_TIME == true
SerialPort.print("loop time (ms) = ");
SerialPort.println(millis() - timestamp);
#endif
}
#if DEBUG__PRINT_LOOP_TIME == true
else
{
SerialPort.println("waiting...");
}
#endif
}
另一个选项卡上的另一个功能
void Read_Magn();
void Read_Gyro();
void Read_Accel();
float Vector_Dot_Product(const float v1[3], const float v2[3]);
void Vector_Cross_Product(float out[3], const float v1[3], const float v2[3]);
void Vector_Scale(float out[3], const float v[3], float scale);
void Vector_Add(float out[3], const float v1[3], const float v2[3]);
void Matrix_Multiply(const float a[3][3], const float b[3][3], float out[3][3]);
void Matrix_Vector_Multiply(const float a[3][3], const float b[3], float out[3]);
void init_rotation_matrix(float m[3][3], float yaw, float pitch, float roll);
void Compass_Heading();
void output_calibration(int calibration_sensor);
void Matrix_update(void);
void Normalize(void);
void Drift_correction(void);
void Matrix_update(void);
void Euler_angles(void);
void output_angles();
void output_sensors();
void output_sensors_binary();
void output_sensors_text(char raw_or_calibrated);
程序应该能够在代码开头不启动的情况下运行