使用n个尺寸生成3D笛卡尔曲面坐标

时间:2019-07-19 01:51:58

标签: r cartesian-coordinates

我已经实现了一些代码,以使用指定的尺寸生成3D笛卡尔坐标曲面。然而,这是相当慢的,并且是实现该方法的非常低效的方法。有人可以帮助我提供一种需要更少迭代的更好方法吗?

library(rgl)
density <- 1

#test data 5 x 10 x 15 box
a <- seq(from = 1, to = 5, by = density)
b <- seq(from = 1, to = 10, by = density)
c <- seq(from = 1, to = 15, by = density)

#length of each dimension
aL <- length(a)
bL <- length(b)
cL <- length(c)

#data.frame to store 3D box
test = data.frame()

#calculate the indices for the nested for loop
inner <- bL * cL
outer <- aL * bL * cL
tracker <- 1:inner
tracker <- c(tracker, (outer - (inner) + 1):outer)
for(x in 1:(aL-2)) {
    for(i in 1:bL) {
        if(i == 1 || i == bL) {
            tracker <- c(tracker, (inner+1):(inner+cL))
        } else {
            tracker <- c(tracker, inner + 1)
            tracker <- c(tracker, inner + cL)
        }
        inner <- inner + cL
    }
}

#loops over all possible combinations and uses only the indices above
iter <- 1
for(x in a) {
    for(y in b) {
        for(z in c) {
            if(any(iter == tracker)) {
                test <- rbind(test, data.frame(x = x, y = y, z = z))
            }
            iter <- iter + 1
        }
    }
}

points3d(test)

1 个答案:

答案 0 :(得分:0)

虽然有机会通过预先分配矢量和数据帧来加快速度,但您是否考虑过分别生成曲面的六个面,然后将它们粘在一起?

expand.grid函数使此操作变得简单:

faces_xy <- expand.grid(x = a, y = b, z = c(min(c), max(c)))
faces_xz <- expand.grid(x = a, y = c(min(b), max(b)), z = c)
faces_yz <- expand.grid(x = c(min(a), max(a)), y = b, z = c)
surface <- unique(rbind(faces_xy, faces_xz, faces_yz))

每个faces_变量都包含指定平面上的两个面。调用unique是为了消除人脸共享的边缘上的重复点。

我没有进行任何基准测试,也没有费心去分析每种方法的复杂性,但是我希望这样做会更快。