在整个机器学习世界中,我还很陌生。首先,我想可视化我的PCA组件,但是我认为我在for扣中犯了一个错误:有人看到任何错误吗? 谢谢!
import matplotlib.pyplot as plt
file = pd.read_excel('C:/Users/KER1NU/Desktop/397bar.xlsx','Tabelle1',index_col=None, na_values=['NA'])
X=pd.read_excel('C:/Users/KER1NU/Desktop/397bar.xlsx','Tabelle1',index_col=None, na_values=['NA'])
del X['Status']#Alle Spalten außer die Ergebnisspalte "Status"
y = file.Status
print(y.shape)
print(y.head)
from sklearn.preprocessing import StandardScaler
X_Standarized = StandardScaler().fit_transform(X)
print(X_Standarized)
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
principalComponents = pca.fit_transform(X_Standarized)
principalDf = pd.DataFrame(data = principalComponents
, columns = ['principal component 1', 'principal component 2'])
finalDf = pd.concat([principalDf, file[['Status']]], axis = 1)
print(finalDf)
fig = plt.figure(figsize = (10,10))
ax = fig.add_subplot(1,1,1)
ax.set_xlabel('Principal Component 1', fontsize = 15)
ax.set_ylabel('Principal Component 2', fontsize = 15)
ax.set_title('2 component PCA', fontsize = 20)
targets = ['Iris-setosa', 'Iris-versicolor']
colors = ['r', 'g', 'b']
for target, color in zip(targets,colors):
indicesToKeep = finalDf['Status'] == target
ax.scatter(finalDf.loc[indicesToKeep, 'principal component 1']
, finalDf.loc[indicesToKeep, 'principal component 2']
, c = color
, s = 50)
ax.legend(targets)
ax.grid() ```