我有如下距离矩阵:
array([[0, 0.66666667, 1.63636364, 1.33333333, 1.5],
[0.66666667, 0. , 1.33333333, 0.85714286, 1.11111111],
[1.63636364, 1.33333333, 0. , 0.66666667, 0.35294118],
[1.33333333, 0.85714286, 0.66666667, 0. , 0.33333333],
[1.5 , 1.11111111, 0.35294118, 0.33333333, 0. ]])
我使用以下代码进行集群:
from sklearn.metrics.pairwise import pairwise_distances
import numpy as np
import pyclustering
from pyclustering.cluster.kmedoids import kmedoids
# create K-Medoids algorithm for processing distance matrix
kmedoids_instance = kmedoids(matrix, initial_medoids,
data_type='distance_matrix')
# run cluster analysis and obtain results
kmedoids_instance.process()
clusters = kmedoids_instance.get_clusters()
medoids = kmedoids_instance.get_medoids()
但是如何选择initial_medoids? 以及如何找到最佳数目的簇?
请帮助