目前,我有一个4d数组
arr = np.arange(48).reshape((2,2,3,4))
我想将一个以2d数组作为输入的函数应用于从arr
分割的每个2d数组。我已经搜索并阅读了this question,这正是我想要的。
我正在使用的功能是im2col_sliding_broadcasting()
,我从here获得。它以一个2d数组和2个元素的列表作为输入,并返回一个2d数组。就我而言:它需要3x4
2d数组和列表[2, 2]
并返回4x6
2d数组。
我考虑使用apply_along_axis()
,但是as said仅接受1d
函数作为参数。我无法以这种方式应用im2col
函数。
我想要一个形状为2x2x4x6
的输出。我当然可以通过for循环来实现这一点,但是我听说这太浪费时间了:
import numpy as np
def im2col_sliding_broadcasting(A, BSZ, stepsize=1):
# source: https://stackoverflow.com/a/30110497/10666066
# Parameters
M, N = A.shape
col_extent = N - BSZ[1] + 1
row_extent = M - BSZ[0] + 1
# Get Starting block indices
start_idx = np.arange(BSZ[0])[:, None]*N + np.arange(BSZ[1])
# Get offsetted indices across the height and width of input array
offset_idx = np.arange(row_extent)[:, None]*N + np.arange(col_extent)
# Get all actual indices & index into input array for final output
return np.take(A, start_idx.ravel()[:, None] + offset_idx.ravel()[::stepsize])
arr = np.arange(48).reshape((2,2,3,4))
output = np.empty([2,2,4,6])
for i in range(2):
for j in range(2):
temp = im2col_sliding_broadcasting(arr[i, j], [2,2])
output[i, j] = temp
因为我的arr
实际上是一个10000x3x64x64
数组。所以我的问题是:还有另一种方法可以更有效地做到这一点吗?
答案 0 :(得分:1)
我们可以利用基于np.lib.stride_tricks.as_strided
的scikit-image's view_as_windows
来获取滑动窗口。 More info on use of as_strided
based view_as_windows
。
from skimage.util.shape import view_as_windows
W1,W2 = 2,2 # window size
# create sliding windows along last two axes1
w = view_as_windows(arr,(1,1,W1,W2))[...,0,0,:,:]
# Merge the window axes (tha last two axes) and
# merge the axes along which those windows were created (3rd and 4th axes)
outshp = arr.shape[:-2] + (W1*W2,) + ((arr.shape[-2]-W1+1)*(arr.shape[-1]-W2+1),)
out = w.transpose(0,1,4,5,2,3).reshape(outshp)
最后一步强制复制。因此,请尽可能跳过它。