我想在立体阅读中使用热图。我有两个具有深度功能(立体镜)的相机,但是如何识别最接近的点(应该变成红色)和大小? 它是使用立体视觉的人的会计。 就像下面的视频一样。 https://www.youtube.com/watch?v=2lCQehzmUuc 我使用了此页面上的代码(http://timosam.com/python_opencv_depthimage)并有效,但是我想知道如何映射热量,识别最靠近相机的对象以及该对象的大小。
import numpy as np
from sklearn.preprocessing import normalize
import cv2
print('loading images...')
imgL = cv2.imread('imgL.jpg') # downscale images for faster processing if you like
imgR = cv2.imread('imgR.jpg')
# SGBM Parameters -----------------
window_size = 3 # wsize default 3; 5; 7 for SGBM reduced size image; 15 for SGBM full size image (1300px and above); 5 Works nicely
left_matcher = cv2.StereoSGBM_create(
minDisparity=0,
numDisparities=160, # max_disp has to be dividable by 16 f. E. HH 192, 256
blockSize=5,
P1=8 * 3 * window_size ** 2, # wsize default 3; 5; 7 for SGBM reduced size image; 15 for SGBM full size image (1300px and above); 5 Works nicely
P2=32 * 3 * window_size ** 2,
disp12MaxDiff=1,
uniquenessRatio=15,
speckleWindowSize=0,
speckleRange=2,
preFilterCap=63,
mode=cv2.STEREO_SGBM_MODE_SGBM_3WAY
)
# FILTER Parameters
lmbda = 80000
sigma = 1.2
visual_multiplier = 1.0
wls_filter = cv2.ximgproc.createDisparityWLSFilter(matcher_left=left_matcher)
wls_filter.setLambda(lmbda)
wls_filter.setSigmaColor(sigma)
print('computing disparity...')
displ = left_matcher.compute(imgL, imgR) # .astype(np.float32)/16
dispr = right_matcher.compute(imgR, imgL) # .astype(np.float32)/16
displ = np.int16(displ)
dispr = np.int16(dispr)
filteredImg = wls_filter.filter(displ, imgL, None, dispr) # important to put "imgL" here!!!
filteredImg = cv2.normalize(src=filteredImg, dst=filteredImg, beta=0, alpha=255, norm_type=cv2.NORM_MINMAX);
filteredImg = np.uint8(filteredImg)
cv2.imshow('Disparity Map', filteredImg)
cv2.waitKey()
cv2.destroyAllWindows()