如何在keras中使用有序的分类列(“无法将字符串转换为float:'CATEGORY'”)

时间:2019-07-13 16:10:05

标签: python pandas tensorflow keras

我正在参加Kaggle House Prices竞赛,并且数据集包含大量分类数据。我正在尝试将它们设置为如下有序类别:

for col in ordered_category_rating_cols:
    data[col] = data[col].astype(pd.api.types.CategoricalDtype(ordered=True, categories = ["GLQ", "ALQ", "BLQ", "Rec", "LwQ", "Unf", "NA"]))

但是,当我要将数据传递到model.fit()时会引发此错误(下面是完整的堆栈):

  

ValueError:无法将字符串转换为float:'GLQ'

通过去除一堆列,我将其缩小为一列-但是如果我为此打印dtype,它看起来是正确的:

> train_x["BsmtFinType1"].dtype
> CategoricalDtype(categories=['GLQ', 'ALQ', 'BLQ', 'Rec', 'LwQ', 'Unf', 'NA'], ordered=True)

我搜索过高低,但找不到任何解决方案。我需要做些什么让Keras将类别视为浮点数吗?

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-144-c86afee8eb19> in <module>()
      4     batch_size=128,
      5     epochs=6,
----> 6     validation_split=0.1
      7 )
      8 

3 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)
    778           validation_steps=validation_steps,
    779           validation_freq=validation_freq,
--> 780           steps_name='steps_per_epoch')
    781 
    782   def evaluate(self,

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training_arrays.py in model_iteration(model, inputs, targets, sample_weights, batch_size, epochs, verbose, callbacks, val_inputs, val_targets, val_sample_weights, shuffle, initial_epoch, steps_per_epoch, validation_steps, validation_freq, mode, validation_in_fit, prepared_feed_values_from_dataset, steps_name, **kwargs)
    361 
    362         # Get outputs.
--> 363         batch_outs = f(ins_batch)
    364         if not isinstance(batch_outs, list):
    365           batch_outs = [batch_outs]

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/backend.py in __call__(self, inputs)
   3275         tensor_type = dtypes_module.as_dtype(tensor.dtype)
   3276         array_vals.append(np.asarray(value,
-> 3277                                      dtype=tensor_type.as_numpy_dtype))
   3278 
   3279     if self.feed_dict:

/usr/local/lib/python3.6/dist-packages/numpy/core/numeric.py in asarray(a, dtype, order)
    536 
    537     """
--> 538     return array(a, dtype, copy=False, order=order)
    539 
    540 

ValueError: could not convert string to float: 'GLQ'

2 个答案:

答案 0 :(得分:1)

您可以将@Override public void configure(WebSecurity web) throws Exception { web .ignoring() .antMatchers("**/public/**") } 数据转换为与sklearn.preprocessing.LabelEncoder相同的category

codes

答案 1 :(得分:1)

将分类列转换为数据的方式

import pandas as pd
df = pd.DataFrame(data={"gender":["male","female"]})
df['gender'] = df['gender'].astype('category').cat.codes

  gender
0   1
1   0

如果多列包含分类数据

category_columns = list(df.select_dtypes(['category']).columns)
df[category_columns] = df[category_columns].apply(lambda x: x.cat.codes)