如何在python中使用动态时间扭曲和kNN

时间:2019-07-13 01:30:07

标签: python scikit-learn time-series classification knn

我有一个带有两个标签(01)的时间序列数据集。我正在使用动态时间规整(DTW)作为使用k最近邻(kNN)进行分类的相似性度量,如这两篇精彩的博客文章所述:

  • https://nbviewer.jupyter.org/github/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping/blob/master/K_Nearest_Neighbor_Dynamic_Time_Warping.ipynb
  • http://alexminnaar.com/2014/04/16/Time-Series-Classification-and-Clustering-with-Python.html

    Arguments
    ---------
    n_neighbors : int, optional (default = 5)
        Number of neighbors to use by default for KNN
    
    max_warping_window : int, optional (default = infinity)
        Maximum warping window allowed by the DTW dynamic
        programming function
    
    subsample_step : int, optional (default = 1)
        Step size for the timeseries array. By setting subsample_step = 2,
        the timeseries length will be reduced by 50% because every second
        item is skipped. Implemented by x[:, ::subsample_step]
    """
    
    def __init__(self, n_neighbors=5, max_warping_window=10000, subsample_step=1):
        self.n_neighbors = n_neighbors
        self.max_warping_window = max_warping_window
        self.subsample_step = subsample_step
    
    def fit(self, x, l):
        """Fit the model using x as training data and l as class labels
    
        Arguments
        ---------
        x : array of shape [n_samples, n_timepoints]
            Training data set for input into KNN classifer
    
        l : array of shape [n_samples]
            Training labels for input into KNN classifier
        """
    
        self.x = x
        self.l = l
    
    def _dtw_distance(self, ts_a, ts_b, d = lambda x,y: abs(x-y)):
        """Returns the DTW similarity distance between two 2-D
        timeseries numpy arrays.
    
        Arguments
        ---------
        ts_a, ts_b : array of shape [n_samples, n_timepoints]
            Two arrays containing n_samples of timeseries data
            whose DTW distance between each sample of A and B
            will be compared
    
        d : DistanceMetric object (default = abs(x-y))
            the distance measure used for A_i - B_j in the
            DTW dynamic programming function
    
        Returns
        -------
        DTW distance between A and B
        """
    
        # Create cost matrix via broadcasting with large int
        ts_a, ts_b = np.array(ts_a), np.array(ts_b)
        M, N = len(ts_a), len(ts_b)
        cost = sys.maxint * np.ones((M, N))
    
        # Initialize the first row and column
        cost[0, 0] = d(ts_a[0], ts_b[0])
        for i in xrange(1, M):
            cost[i, 0] = cost[i-1, 0] + d(ts_a[i], ts_b[0])
    
        for j in xrange(1, N):
            cost[0, j] = cost[0, j-1] + d(ts_a[0], ts_b[j])
    
        # Populate rest of cost matrix within window
        for i in xrange(1, M):
            for j in xrange(max(1, i - self.max_warping_window),
                            min(N, i + self.max_warping_window)):
                choices = cost[i - 1, j - 1], cost[i, j-1], cost[i-1, j]
                cost[i, j] = min(choices) + d(ts_a[i], ts_b[j])
    
        # Return DTW distance given window 
        return cost[-1, -1]
    
    def _dist_matrix(self, x, y):
        """Computes the M x N distance matrix between the training
        dataset and testing dataset (y) using the DTW distance measure
    
        Arguments
        ---------
        x : array of shape [n_samples, n_timepoints]
    
        y : array of shape [n_samples, n_timepoints]
    
        Returns
        -------
        Distance matrix between each item of x and y with
            shape [training_n_samples, testing_n_samples]
        """
    
        # Compute the distance matrix        
        dm_count = 0
    
        # Compute condensed distance matrix (upper triangle) of pairwise dtw distances
        # when x and y are the same array
        if(np.array_equal(x, y)):
            x_s = np.shape(x)
            dm = np.zeros((x_s[0] * (x_s[0] - 1)) // 2, dtype=np.double)
    
            p = ProgressBar(shape(dm)[0])
    
            for i in xrange(0, x_s[0] - 1):
                for j in xrange(i + 1, x_s[0]):
                    dm[dm_count] = self._dtw_distance(x[i, ::self.subsample_step],
                                                      y[j, ::self.subsample_step])
    
                    dm_count += 1
                    p.animate(dm_count)
    
            # Convert to squareform
            dm = squareform(dm)
            return dm
    
        # Compute full distance matrix of dtw distnces between x and y
        else:
            x_s = np.shape(x)
            y_s = np.shape(y)
            dm = np.zeros((x_s[0], y_s[0])) 
            dm_size = x_s[0]*y_s[0]
    
            p = ProgressBar(dm_size)
    
            for i in xrange(0, x_s[0]):
                for j in xrange(0, y_s[0]):
                    dm[i, j] = self._dtw_distance(x[i, ::self.subsample_step],
                                                  y[j, ::self.subsample_step])
                    # Update progress bar
                    dm_count += 1
                    p.animate(dm_count)
    
            return dm
    
    def predict(self, x):
        """Predict the class labels or probability estimates for 
        the provided data
    
        Arguments
        ---------
          x : array of shape [n_samples, n_timepoints]
              Array containing the testing data set to be classified
    
        Returns
        -------
          2 arrays representing:
              (1) the predicted class labels 
              (2) the knn label count probability
        """
    
        dm = self._dist_matrix(x, self.x)
    
        # Identify the k nearest neighbors
        knn_idx = dm.argsort()[:, :self.n_neighbors]
    
        # Identify k nearest labels
        knn_labels = self.l[knn_idx]
    
        # Model Label
        mode_data = mode(knn_labels, axis=1)
        mode_label = mode_data[0]
        mode_proba = mode_data[1]/self.n_neighbors
    
        return mode_label.ravel(), mode_proba.ravel()
    

但是,对于使用kNN进行分类,两个帖子使用其自己的kNN算法。

我想在分类中使用sklearn的选项,例如gridsearchcv。因此,我想知道如何在sklearn kNN中使用动态时间规整(DTW)。

注意:我不仅限于sklearn,也很高兴在其他图书馆中收到答案

很高兴在需要时提供更多详细信息。

2 个答案:

答案 0 :(得分:1)

您可以为KNN使用自定义指标。 因此,您只需要自己实现DTW(或使用/适应python中任何现有的DTW实现) [gist of this code]

import numpy as np
from scipy.spatial import distance
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report

#toy dataset 
X = np.random.random((100,10))
y = np.random.randint(0,2, (100))
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)

#custom metric
def DTW(a, b):   
    an = a.size
    bn = b.size
    pointwise_distance = distance.cdist(a.reshape(-1,1),b.reshape(-1,1))
    cumdist = np.matrix(np.ones((an+1,bn+1)) * np.inf)
    cumdist[0,0] = 0

    for ai in range(an):
        for bi in range(bn):
            minimum_cost = np.min([cumdist[ai, bi+1],
                                   cumdist[ai+1, bi],
                                   cumdist[ai, bi]])
            cumdist[ai+1, bi+1] = pointwise_distance[ai,bi] + minimum_cost

    return cumdist[an, bn]

#train
parameters = {'n_neighbors':[2, 4, 8]}
clf = GridSearchCV(KNeighborsClassifier(metric=DTW), parameters, cv=3, verbose=1)
clf.fit(X_train, y_train)



#evaluate
y_pred = clf.predict(X_test)
print(classification_report(y_test, y_pred))

哪个产量

Fitting 3 folds for each of 3 candidates, totalling 9 fits        

[Parallel(n_jobs=1)]: Done   9 out of   9 | elapsed:   29.0s finished

                         precision    recall  f1-score   support

                      0       0.57      0.89      0.70        18
                      1       0.60      0.20      0.30        15

            avg / total       0.58      0.58      0.52        33

答案 1 :(得分:1)

使用dtaidistance。这是我正在使用的简化管道,以便找到长度在1到20之间的所有窗口的最佳选择:

from dtaidistance import dtw
from sklearn.metrics import f1_score

def knn(trainX,trainY,testX,testY,w):
    predictions = np.zeros(len(testX))

    for testSampleIndex,testSample in enumerate(testX):
        minimumDistance = float('inf')
        for trainingSampleIndex, trainingSample in enumerate(trainX):
            distanceBetweenTestAndTrainingAScan = dtw.distance(testSample,trainingSample,use_c=True,window=w,max_dist=minimumDistance)
            if (distanceBetweenTestAndTrainingAScan < minimumDistance):
                minimumDistance = distanceBetweenTestAndTrainingAScan
                predictions[testSampleIndex] = trainY[trainingSampleIndex]

    return [testY,predictions]

def DTWForCurrentDataSet(testX,testY,trainX,trainY,testDataSetID):
    testDataSetBestF1Score = -float("inf")
    testDataSetBestPredictions = []
    for w in range(1,21):
        [testY,predictions] = knn(trainX,trainY,testX,testY,w)

        microF1Score = f1_score(testY, predictions, average='micro')
        if (microF1Score > testDataSetBestF1Score):
            testDataSetBestF1Score = microF1Score
            testDataSetBestPredictions = predictions
    return testDataSetBestPredictions

def runDTW(database):
    for testDataSetID in database:
        [testX,testY,trainX,trainY,patientIDsForTraining] = createTestingAndTrainingSets(database,testDataSetID)
        testDataSetBestPredictions = DTWForCurrentDataSet(testX,testY,trainX,trainY,testDataSetID)