如何修复熊猫数据框日期时间

时间:2019-07-10 09:46:04

标签: python pandas dataframe

不确定我的datetime列是否是字符串,或者它是怎么回事。

好吧,我尝试过按数量排序,然后按日期时间排序,但是从来没有做对。

输入

    print("kimera1")
    #with pd.option_context('display.max_rows', None, 'display.max_columns', None):  # more options can be specified also
    print(kimera)
    kimera = kimera.sort_values(by='quantity',ascending=False)
    print("kimera2")
    print(kimera)
    kimera = kimera.sort_values(by='date',ascending=True)
    print("kimera3")
    print(kimera)

输出

kimera1
     client_id                       date  ...  type_id    unit_price
0   2114499871  2019-07-09T21:38:15+00:00  ...    37483  8.560000e+07
1     97005654  2019-07-09T08:07:57+00:00  ...       38  3.999900e+02
2     96644839  2019-07-07T02:02:45+00:00  ...    37457  2.900000e+07
3   2113806433  2019-07-06T18:13:12+00:00  ...    37482  7.300000e+07
4   1240358507  2019-07-05T19:38:20+00:00  ...    11381  4.399900e+07
5     97005654  2019-07-05T04:12:23+00:00  ...       38  3.999900e+02
6     97005654  2019-07-05T02:49:26+00:00  ...       38  3.999900e+02
7   1857838543  2019-07-03T20:08:15+00:00  ...    37482  6.900000e+07
8     92337897  2019-07-03T14:44:32+00:00  ...    11365  4.480000e+07
9   2114793091  2019-07-01T23:04:26+00:00  ...    12044  3.000000e+07
10    95826459  2019-06-30T07:22:45+00:00  ...    37482  1.190000e+08
11    94904480  2019-06-30T01:31:01+00:00  ...    11186  3.717800e+07
12  2113704258  2019-06-29T10:46:53+00:00  ...    12044  3.399700e+07
13  2115385566  2019-06-27T12:07:58+00:00  ...    11393  4.490000e+07
14  1732767131  2019-06-27T09:22:24+00:00  ...       38  3.252400e+02
15    93204128  2019-06-26T20:47:01+00:00  ...    11198  3.600000e+07
16    90216786  2019-06-25T23:51:48+00:00  ...    11172  3.600000e+07
17    91205905  2019-06-25T19:59:21+00:00  ...    16275  6.000000e+02
18  2113996003  2019-06-25T16:52:14+00:00  ...    11190  4.000000e+07
19    96345205  2019-06-25T16:39:49+00:00  ...    16275  6.000000e+02
20    95103814  2019-06-25T01:16:28+00:00  ...    11202  3.000000e+07
21   543983309  2019-06-24T14:05:49+00:00  ...    11172  2.741538e+07
22  2114159703  2019-06-23T21:20:04+00:00  ...       34  6.300000e+00
23  2114159703  2019-06-23T15:28:37+00:00  ...    16274  8.500000e+02
24  1872130440  2019-06-23T10:02:21+00:00  ...    11400  3.849900e+07
25  2112790910  2019-06-23T00:00:46+00:00  ...    11202  2.839450e+07
26  2115326382  2019-06-22T22:42:00+00:00  ...    11371  3.715019e+07
27    96768321  2019-06-22T17:02:14+00:00  ...    37481  8.900000e+07
28  1009077082  2019-06-21T23:35:03+00:00  ...    11379  4.200000e+07
29   755876330  2019-06-21T12:27:59+00:00  ...    11186  3.717800e+07
30  1556713165  2019-06-20T23:27:23+00:00  ...    11393  3.699800e+07
31   513171897  2019-06-19T15:58:51+00:00  ...    11381  4.381799e+07
32    96711003  2019-06-18T17:50:15+00:00  ...    11198  3.700000e+07
33   408059764  2019-06-18T15:36:49+00:00  ...    11172  3.500000e+07
34  1276544138  2019-06-17T21:32:47+00:00  ...    11379  4.100000e+07
35    94184713  2019-06-17T03:30:26+00:00  ...    37481  8.700000e+07
36  2113441660  2019-06-16T04:12:59+00:00  ...    37458  3.494900e+07
37   755284989  2019-06-15T19:54:44+00:00  ...    37458  3.500000e+07
38  1731319339  2019-06-13T12:00:14+00:00  ...    11379  4.200000e+07
39    96053157  2019-06-12T04:07:15+00:00  ...    37483  8.550000e+07
40  1690931127  2019-06-12T00:44:40+00:00  ...    37482  6.170000e+07
41    92812153  2019-06-11T05:23:09+00:00  ...    37460  3.650000e+07
42  2114791711  2019-06-10T16:14:59+00:00  ...    11371  4.150000e+07
43  1547875730  2019-06-10T15:22:53+00:00  ...    17887  9.999900e+02
44   227535700  2019-06-10T15:12:06+00:00  ...    16272  5.445000e+02
45    95165645  2019-06-10T06:32:52+00:00  ...    11393  5.399000e+07
46  1859791498  2019-06-10T05:35:57+00:00  ...    22460  6.200000e+07
47  2112629749  2019-06-09T15:46:46+00:00  ...     2549  1.800000e+06
48    94391975  2019-06-08T00:06:12+00:00  ...    37460  3.650000e+07
49    91521700  2019-06-07T14:11:45+00:00  ...    11393  4.999800e+07
50  1171184159  2019-06-06T18:10:19+00:00  ...    12044  3.399800e+07
51    96410073  2019-06-05T17:32:01+00:00  ...    11371  4.700000e+07

[52 rows x 10 columns]
kimera2
     client_id                       date  ...  type_id    unit_price
22  2114159703  2019-06-23T21:20:04+00:00  ...       34  6.300000e+00
44   227535700  2019-06-10T15:12:06+00:00  ...    16272  5.445000e+02
43  1547875730  2019-06-10T15:22:53+00:00  ...    17887  9.999900e+02
19    96345205  2019-06-25T16:39:49+00:00  ...    16275  6.000000e+02
17    91205905  2019-06-25T19:59:21+00:00  ...    16275  6.000000e+02
23  2114159703  2019-06-23T15:28:37+00:00  ...    16274  8.500000e+02
14  1732767131  2019-06-27T09:22:24+00:00  ...       38  3.252400e+02
5     97005654  2019-07-05T04:12:23+00:00  ...       38  3.999900e+02
6     97005654  2019-07-05T02:49:26+00:00  ...       38  3.999900e+02
1     97005654  2019-07-09T08:07:57+00:00  ...       38  3.999900e+02
34  1276544138  2019-06-17T21:32:47+00:00  ...    11379  4.100000e+07
35    94184713  2019-06-17T03:30:26+00:00  ...    37481  8.700000e+07
38  1731319339  2019-06-13T12:00:14+00:00  ...    11379  4.200000e+07
33   408059764  2019-06-18T15:36:49+00:00  ...    11172  3.500000e+07
36  2113441660  2019-06-16T04:12:59+00:00  ...    37458  3.494900e+07
37   755284989  2019-06-15T19:54:44+00:00  ...    37458  3.500000e+07
32    96711003  2019-06-18T17:50:15+00:00  ...    11198  3.700000e+07
0   2114499871  2019-07-09T21:38:15+00:00  ...    37483  8.560000e+07
40  1690931127  2019-06-12T00:44:40+00:00  ...    37482  6.170000e+07
39    96053157  2019-06-12T04:07:15+00:00  ...    37483  8.550000e+07
30  1556713165  2019-06-20T23:27:23+00:00  ...    11393  3.699800e+07
41    92812153  2019-06-11T05:23:09+00:00  ...    37460  3.650000e+07
42  2114791711  2019-06-10T16:14:59+00:00  ...    11371  4.150000e+07
45    95165645  2019-06-10T06:32:52+00:00  ...    11393  5.399000e+07
46  1859791498  2019-06-10T05:35:57+00:00  ...    22460  6.200000e+07
47  2112629749  2019-06-09T15:46:46+00:00  ...     2549  1.800000e+06
48    94391975  2019-06-08T00:06:12+00:00  ...    37460  3.650000e+07
49    91521700  2019-06-07T14:11:45+00:00  ...    11393  4.999800e+07
50  1171184159  2019-06-06T18:10:19+00:00  ...    12044  3.399800e+07
31   513171897  2019-06-19T15:58:51+00:00  ...    11381  4.381799e+07
26  2115326382  2019-06-22T22:42:00+00:00  ...    11371  3.715019e+07
29   755876330  2019-06-21T12:27:59+00:00  ...    11186  3.717800e+07
12  2113704258  2019-06-29T10:46:53+00:00  ...    12044  3.399700e+07
2     96644839  2019-07-07T02:02:45+00:00  ...    37457  2.900000e+07
3   2113806433  2019-07-06T18:13:12+00:00  ...    37482  7.300000e+07
4   1240358507  2019-07-05T19:38:20+00:00  ...    11381  4.399900e+07
7   1857838543  2019-07-03T20:08:15+00:00  ...    37482  6.900000e+07
8     92337897  2019-07-03T14:44:32+00:00  ...    11365  4.480000e+07
9   2114793091  2019-07-01T23:04:26+00:00  ...    12044  3.000000e+07
10    95826459  2019-06-30T07:22:45+00:00  ...    37482  1.190000e+08
11    94904480  2019-06-30T01:31:01+00:00  ...    11186  3.717800e+07
13  2115385566  2019-06-27T12:07:58+00:00  ...    11393  4.490000e+07
28  1009077082  2019-06-21T23:35:03+00:00  ...    11379  4.200000e+07
15    93204128  2019-06-26T20:47:01+00:00  ...    11198  3.600000e+07
16    90216786  2019-06-25T23:51:48+00:00  ...    11172  3.600000e+07
18  2113996003  2019-06-25T16:52:14+00:00  ...    11190  4.000000e+07
20    95103814  2019-06-25T01:16:28+00:00  ...    11202  3.000000e+07
21   543983309  2019-06-24T14:05:49+00:00  ...    11172  2.741538e+07
24  1872130440  2019-06-23T10:02:21+00:00  ...    11400  3.849900e+07
25  2112790910  2019-06-23T00:00:46+00:00  ...    11202  2.839450e+07
27    96768321  2019-06-22T17:02:14+00:00  ...    37481  8.900000e+07
51    96410073  2019-06-05T17:32:01+00:00  ...    11371  4.700000e+07

[52 rows x 10 columns]
kimera3
     client_id                       date  ...  type_id    unit_price
0   2114499871  2019-07-09T21:38:15+00:00  ...    37483  8.560000e+07
1     97005654  2019-07-09T08:07:57+00:00  ...       38  3.999900e+02
2     96644839  2019-07-07T02:02:45+00:00  ...    37457  2.900000e+07
3   2113806433  2019-07-06T18:13:12+00:00  ...    37482  7.300000e+07
4   1240358507  2019-07-05T19:38:20+00:00  ...    11381  4.399900e+07
5     97005654  2019-07-05T04:12:23+00:00  ...       38  3.999900e+02
6     97005654  2019-07-05T02:49:26+00:00  ...       38  3.999900e+02
7   1857838543  2019-07-03T20:08:15+00:00  ...    37482  6.900000e+07
8     92337897  2019-07-03T14:44:32+00:00  ...    11365  4.480000e+07
9   2114793091  2019-07-01T23:04:26+00:00  ...    12044  3.000000e+07
10    95826459  2019-06-30T07:22:45+00:00  ...    37482  1.190000e+08
11    94904480  2019-06-30T01:31:01+00:00  ...    11186  3.717800e+07
12  2113704258  2019-06-29T10:46:53+00:00  ...    12044  3.399700e+07
13  2115385566  2019-06-27T12:07:58+00:00  ...    11393  4.490000e+07
14  1732767131  2019-06-27T09:22:24+00:00  ...       38  3.252400e+02
15    93204128  2019-06-26T20:47:01+00:00  ...    11198  3.600000e+07
16    90216786  2019-06-25T23:51:48+00:00  ...    11172  3.600000e+07
17    91205905  2019-06-25T19:59:21+00:00  ...    16275  6.000000e+02
18  2113996003  2019-06-25T16:52:14+00:00  ...    11190  4.000000e+07
19    96345205  2019-06-25T16:39:49+00:00  ...    16275  6.000000e+02
20    95103814  2019-06-25T01:16:28+00:00  ...    11202  3.000000e+07
21   543983309  2019-06-24T14:05:49+00:00  ...    11172  2.741538e+07
22  2114159703  2019-06-23T21:20:04+00:00  ...       34  6.300000e+00
23  2114159703  2019-06-23T15:28:37+00:00  ...    16274  8.500000e+02
24  1872130440  2019-06-23T10:02:21+00:00  ...    11400  3.849900e+07
25  2112790910  2019-06-23T00:00:46+00:00  ...    11202  2.839450e+07
26  2115326382  2019-06-22T22:42:00+00:00  ...    11371  3.715019e+07
27    96768321  2019-06-22T17:02:14+00:00  ...    37481  8.900000e+07
28  1009077082  2019-06-21T23:35:03+00:00  ...    11379  4.200000e+07
29   755876330  2019-06-21T12:27:59+00:00  ...    11186  3.717800e+07
30  1556713165  2019-06-20T23:27:23+00:00  ...    11393  3.699800e+07
31   513171897  2019-06-19T15:58:51+00:00  ...    11381  4.381799e+07
32    96711003  2019-06-18T17:50:15+00:00  ...    11198  3.700000e+07
33   408059764  2019-06-18T15:36:49+00:00  ...    11172  3.500000e+07
34  1276544138  2019-06-17T21:32:47+00:00  ...    11379  4.100000e+07
35    94184713  2019-06-17T03:30:26+00:00  ...    37481  8.700000e+07
36  2113441660  2019-06-16T04:12:59+00:00  ...    37458  3.494900e+07
37   755284989  2019-06-15T19:54:44+00:00  ...    37458  3.500000e+07
38  1731319339  2019-06-13T12:00:14+00:00  ...    11379  4.200000e+07
39    96053157  2019-06-12T04:07:15+00:00  ...    37483  8.550000e+07
40  1690931127  2019-06-12T00:44:40+00:00  ...    37482  6.170000e+07
41    92812153  2019-06-11T05:23:09+00:00  ...    37460  3.650000e+07
42  2114791711  2019-06-10T16:14:59+00:00  ...    11371  4.150000e+07
43  1547875730  2019-06-10T15:22:53+00:00  ...    17887  9.999900e+02
44   227535700  2019-06-10T15:12:06+00:00  ...    16272  5.445000e+02
45    95165645  2019-06-10T06:32:52+00:00  ...    11393  5.399000e+07
46  1859791498  2019-06-10T05:35:57+00:00  ...    22460  6.200000e+07
51    96410073  2019-06-05T17:32:01+00:00  ...    11371  4.700000e+07
50  1171184159  2019-06-06T18:10:19+00:00  ...    12044  3.399800e+07
49    91521700  2019-06-07T14:11:45+00:00  ...    11393  4.999800e+07
48    94391975  2019-06-08T00:06:12+00:00  ...    37460  3.650000e+07
47  2112629749  2019-06-09T15:46:46+00:00  ...     2549  1.800000e+06

[52 rows x 10 columns]

数据最初是按正确的顺序排列的,最新的在顶部,最旧的在底部,这就是数据从服务器中输出的方式。 但是我希望能够将其归类到例如按数量排序的情况。 差不多了,但是最后五个确实搞砸了,不知道为什么。 因此,很显然,如果datatime是字符串,我需要将其转换为正确的pandas.to_datetime,如果我理解正确的话,甚至不确定那是否正确。 如果是正确的话,我不确定如何开始。

1 个答案:

答案 0 :(得分:0)

请确保将日期转换为日期时间类型(如果采用字符串格式):

kimera['date'] = pd.to_datetime(kimera['date'], errors='coerce')

然后执行以下操作:

kimera = kimera.sort_values(['quantity', 'date'], ascending = [False, True])