我有一个定期的数据集。但是,这些时间段不是连续的。我的数据模式就是这样
Period Customer_No Date Product
1 111 01.01.2017 X
3 111 05.09.2017 Y
8 111 02.05.2018 Z
6 222 02.02.2017 X
9 222 06.04.2017 Z
12 222 05.09.2018 B
15 222 02.01.2019 A
所有客户的期末应为15。我想根据客户创建连续的期间,并用以下以前的数据填充它们:
Period Customer_No Date Product
1 111 01.01.2017 X
2 111 01.01.2017 X
3 111 05.09.2017 Y
4 111 05.09.2017 Y
5 111 05.09.2017 Y
6 111 05.09.2017 Y
7 111 05.09.2017 Y
8 111 02.05.2018 Z
9 111 02.05.2018 Z
10 111 02.05.2018 Z
11 111 02.05.2018 Z
12 111 02.05.2018 Z
13 111 02.05.2018 Z
14 111 02.05.2018 Z
15 111 02.05.2018 Z
6 222 02.02.2017 X
7 222 02.02.2017 X
8 222 02.02.2017 X
9 222 06.04.2017 Z
10 222 06.04.2017 Z
11 222 06.04.2017 Z
12 222 05.09.2018 B
13 222 05.09.2018 B
14 222 05.09.2018 B
15 222 02.01.2019 A
create table tbl_cust(period int,Customer_No int, Date date, Product varchar)
insert into tbl_cust values(1,111,'01.01.2017','X')
insert into tbl_cust values(3,111,'05.09.2017','Y')
insert into tbl_cust values(8,111,'02.05.2018','Z')
insert into tbl_cust values(6,222,'02.02.2017','X')
insert into tbl_cust values(9,222,'06.04.2017','Z')
insert into tbl_cust values(12,222,'05.09.2018','B')
insert into tbl_cust values(15,222,'02.01.2019','A')
答案 0 :(得分:2)
您可以使用递归CTE生成所需的行。然后,您需要用最新数据填充它们。您真正想要的是lag(ignore nulls)
,但是SQL Server不支持该功能。
每个客户最多只能有15行,因此apply
是一个合理的选择:
with cte as (
select min(period) as period, customer_no
from tbl_cust
group by customer_no
union all
select period + 1, customer_no
from cte
where period < 15
)
select cte.period, cte.customer_no, c.date, c.product
from cte cross apply
(select top (1) c.*
from tbl_cust c
where c.customer_no = cte.customer_no and
c.period <= cte.period
order by c.period desc
) c
order by cte.customer_no, cte.period;
Here是db <>小提琴。
答案 1 :(得分:1)
您可以尝试一下。
select ID as period, Customer_No, [Date], Product from
(VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11),(12),(13),(14),(15)) P(ID)
OUTER APPLY( SELECT *, ROW_NUMBER() OVER(PARTITION BY Customer_No ORDER BY period desc) RN
FROM tbl_cust C WHERE C.period <= P.ID ) X
WHERE X.RN = 1
ORDER BY Customer_No, ID
结果:
period Customer_No Date Product
----------- ----------- ---------- -------
1 111 2017-01-01 X
2 111 2017-01-01 X
3 111 2017-05-09 Y
4 111 2017-05-09 Y
5 111 2017-05-09 Y
6 111 2017-05-09 Y
7 111 2017-05-09 Y
8 111 2018-02-05 Z
9 111 2018-02-05 Z
10 111 2018-02-05 Z
11 111 2018-02-05 Z
12 111 2018-02-05 Z
13 111 2018-02-05 Z
14 111 2018-02-05 Z
15 111 2018-02-05 Z
6 222 2017-02-02 X
7 222 2017-02-02 X
8 222 2017-02-02 X
9 222 2017-06-04 Z
10 222 2017-06-04 Z
11 222 2017-06-04 Z
12 222 2018-05-09 B
13 222 2018-05-09 B
14 222 2018-05-09 B
15 222 2019-02-01 A