获得了用于神经网络的python代码。我想训练网络以了解图片是否是技术图纸。因此,我得到了大约45个文件的一组训练图像和大约2000个文件的一组测试图像。我将所有文件重塑为28x28的大型灰度图像,并将它们转换为火车和测试的csv文件。然后,我调整了输出节点并更改了两个csvfiles的路径。我使用pandas
添加了一个批处理过程,以逐块读取csv文件。我这样做是为了防止出现内存错误,因为测试数据的csv文件高于14GB。
这是神经网络的代码:
import numpy as np
import scipy.special
from tqdm import tqdm
import csv
import pandas as pd
class neuralNetwork:
def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
self.inode = inputnodes
self.hnode = hiddennodes
self.onode = outputnodes
# =============================================================================
# self.wih=np.random.normal(0.0,pow(self.inode,-0.5),(self.hnode,self.inode))
# self.who=np.random.normal(0.0,pow(self.hnode,-0.5),(self.onode,self.hnode))
# =============================================================================
self.wih = np.random.normal(0, pow(self.hnode, -0.5), (self.hnode, self.inode))
self.who = np.random.normal(0, pow(self.onode, -0.5), (self.onode, self.hnode))
self.lr = learningrate
self.activation_function = lambda x: scipy.special.expit(x)
pass
def train(self, inputs_list, targets_list):
inputs = np.array(inputs_list, ndmin=2).T
targets = np.array(targets_list, ndmin=2).T
hidden_inputs = np.dot(self.wih, inputs)
hidden_outputs = self.activation_function(hidden_inputs)
final_inputs = np.dot(self.who, hidden_outputs)
final_outputs = self.activation_function(final_inputs)
output_errors = targets - final_outputs
hidden_errors = np.dot(self.who.T, output_errors)
self.who += self.lr * np.dot((output_errors * final_outputs
* (1.0 - final_outputs)), np.transpose(hidden_outputs))
self.wih += self.lr * np.dot((hidden_errors * hidden_outputs
* (1.0 - hidden_outputs)), np.transpose(inputs))
pass
def test(self, inputs_list):
inputs = np.array(inputs_list, ndmin=2).T
hidden_inputs = np.dot(self.wih, inputs)
hidden_outputs = self.activation_function(hidden_inputs)
final_inputs = np.dot(self.who, hidden_outputs)
final_outputs = self.activation_function(final_inputs)
return final_outputs
input_nodes = 784
hidden_nodes = 500
output_nodes = 100000
learning_rate = 0.1
epochs = 5
chunksize = 5
n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate)
training_data_file = open("C:/Users/Anwender/Documents/Uni/KI/Python/train.csv", 'r')
#training_data_list = training_data_file.readlines()
#training_data_file.close()
for chunk in pd.read_csv(training_data_file, chunksize=chunksize):
process(chunk)
for e in range(epochs):
for record in tqdm(get_chunk()): # train on this record
all_values = record.split(',')
inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
targets = np.zeros(output_nodes) + 0.01
targets[int(float(all_values[0]))] = 0.99
n.train(inputs, targets)
pass
pass
test_data_file = open("C:/Users/Anwender/Documents/Uni/KI/Python/test.csv", 'r')
#test_data_list = test_data_file.readlines()
#test_data_file.close()
scorecard = []
for chunk in pd.read_csv(test_data_file, chunksize=chunksize):
process(chunk)
for record in test_data_list:
all_values = record.split(',')
correct_label = int(all_values[0])
inputs = (np.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
outputs = n.test(inputs)
label = np.argmax(outputs)
if (label == correct_label):
scorecard.append(1)
else:
scorecard.append(0)
pass
pass
scorecard_array = np.asarray(scorecard)
print ("Genauigkeit = ", scorecard_array.sum() / scorecard_array.size)
仍然,当我尝试运行网络时出现内存错误。完整的错误消息是:
回溯(最近通话最近): 文件“ C:\ Users \ Anwender \ Documents \ Uni \ KI \ Python \ code_nn__tech_draw.py”,第58行 对于pd.read_csv(training_data_file,chunksize = chunksize)中的块: next 中的文件“ C:\ Users \ Anwender \ AppData \ Local \ Programs \ Python \ Python36-32 \ lib \ site-packages \ pandas \ io \ parsers.py”,行1115 返回self.get_chunk() 在get_chunk中的文件1117行中的文件“ C:\ Users \ Anwender \ AppData \ Local \ Programs \ Python \ Python36-32 \ lib \ site-packages \ pandas \ io \ parsers.py” 返回self.read(nrows = size) 已读取文件“ C:\ Users \ Anwender \ AppData \ Local \ Programs \ Python \ Python36-32 \ lib \ site-packages \ pandas \ io \ parsers.py”,行1139 ret = self._engine.read(行) 读取文件“ C:\ Users \ Anwender \ AppData \ Local \ Programs \ Python \ Python36-32 \ lib \ site-packages \ pandas \ io \ parsers.py”,行2039 索引=确保_索引_从_序列(数组) 文件“ C:\ Users \ Anwender \ AppData \ Local \ Programs \ Python \ Python36-32 \ lib \ site-packages \ pandas \ core \ indexes \ base.py”,第5315行,在sure_index_from_sequences中 返回MultiIndex.from_arrays(序列,名称=名称) 文件“ C:\ Users \ Anwender \ AppData \ Local \ Programs \ Python \ Python36-32 \ lib \ site-packages \ pandas \ core \ indexes \ multi.py”,行340,在from_arrays中 代码,级别= _factorize_from_iterables(数组) 文件“ C:\ Users \ Anwender \ AppData \ Local \ Programs \ Python \ Python36-32 \ lib \ site-packages \ pandas \ core \ arrays \ categorical.py”,行2708,在_factorize_from_iterables中 返回地图(列表,lzip( [_ factorize_from_iterable(it)for iterables])) 文件“ C:\ Users \ Anwender \ AppData \ Local \ Programs \ Python \ Python36-32 \ lib \ site-packages \ pandas \ core \ arrays \ categorical.py”,第2708行,在 返回地图(列表,lzip( [_ factorize_from_iterable(it)for iterables])) MemoryError