在TensorFlow中使用CSV文件的神经网络

时间:2017-02-14 06:25:52

标签: python csv tensorflow neural-network

我正在使用两个教程来弄清楚如何获取格式的CVS文件:

feature1,feature2....feature20,label
feature1,feature2....feature20,label
...

并在其上训练神经网络。我在下面的代码中所做的是在CVS文件中读取并一次将100行分成批次:x_batch和y_batch。接下来,我尝试让NN分批学习。但是,我收到以下错误:

"ValueError: Cannot feed value of shape (99,) for Tensor 'Placeholder_1:0', which has shape '(?, 4)'"

我想知道我做错了什么,以及另一种方法可能是什么。

import tensorflow as tf

filename_queue = tf.train.string_input_producer(["VOL_TRAIN.csv"])


line_reader = tf.TextLineReader(skip_header_lines=1)
_, csv_row = line_reader.read(filename_queue)


# Type information and column names based on the decoded CSV.
[[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[""]]

record_defaults = [[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0]]
in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11,in12,in13,in14,in15,in16,in17,in18,in19,in20,out = \
    tf.decode_csv(csv_row, record_defaults=record_defaults)

# Turn the features back into a tensor.
features = tf.pack([in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11,in12,in13,in14,in15,in16,in17,in18,in19,in20])


# Parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100
display_step = 1
num_examples= 33500

# Network Parameters
n_hidden_1 = 256 # 1st layer number of features
n_hidden_2 = 256 # 2nd layer number of features
n_input = 20 # MNIST data input (img shape: 28*28)
n_classes = 4 # MNIST total classes (0-9 digits)

# tf Graph input
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])


# Create model
def multilayer_perceptron(x, weights, biases):
    # Hidden layer with RELU activation
    layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
    layer_1 = tf.nn.relu(layer_1)
    # Hidden layer with RELU activation
    layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
    layer_2 = tf.nn.relu(layer_2)
    # Output layer with linear activation
    out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
    return out_layer


# Store layers weight & bias
weights = {
    'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
    'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
    'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
    'b1': tf.Variable(tf.random_normal([n_hidden_1])),
    'b2': tf.Variable(tf.random_normal([n_hidden_2])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}

# Construct model
pred = multilayer_perceptron(x, weights, biases)

# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# Initializing the variables
init = tf.global_variables_initializer()



with tf.Session() as sess:
    #tf.initialize_all_variables().run()
    sess.run(init)
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord)

    for epoch in range(training_epochs):
        avg_cost = 0.
        total_batch = int(num_examples/batch_size)
        # Loop over all batches

        for i in range(total_batch):
            batch_x = []
            batch_y = []
            for iteration in range(1, batch_size):
                example, label = sess.run([features, out])
                batch_x.append(example)
                batch_y.append(label)

            # Run optimization op (backprop) and cost op (to get loss value)
            _, c = sess.run([optimizer, cost], feed_dict={x: batch_x,
                                                          y: batch_y})
            # Compute average loss
            avg_cost += c / total_batch
        # Display logs per epoch step
        if epoch % display_step == 0:
            print ("Epoch:", '%04d' % (epoch+1), "cost=", \
                "{:.9f}".format(avg_cost))
    print ("Optimization Finished!")
    coord.request_stop()
    coord.join(threads)

1 个答案:

答案 0 :(得分:1)

您的占位符y指定您输入一个长度未知的数组,其长度为" n_classes" (这是4)。在你的feed_dict中,你给出了数组batch_y,它是一个长度为99的数组(你的batch_size)和数字。

您要做的是将batch_y变量更改为具有单热矢量作为输入。如果有效,请告诉我!