无法从处理器导入process_image

时间:2019-07-09 07:05:38

标签: python machine-learning deep-learning artificial-intelligence

enter image description here未定义变量'process_image'     从处理器导入process_image

当我导入processor时它可以正常工作,但是当我尝试从处理器中导入process_image时,它显示"Undefined variable 'process_image' "

“”“ 用于管理数据的类。 “” 导入csv 将numpy导入为np 随机导入 导入球 导入os.path 导入系统 进口经营者 导入线程 从处理器导入process_image 从keras.utils导入to_categorical

threadsafe_iterator类:     def init (自身,迭代器):         self.iterator =迭代器         self.lock = threading.Lock()

def __iter__(self):
    return self

def __next__(self):
    with self.lock:
        return next(self.iterator)

def threadsafe_generator(func):     “”“装饰者”“”     def gen(* a,** kw):         返回threadsafe_iterator(func(* a,** kw))     返回gen

DataSet()类:

def __init__(self, seq_length=40, class_limit=None, image_shape=(224, 224, 3)):
    """Constructor.
    seq_length = (int) the number of frames to consider
    class_limit = (int) number of classes to limit the data to.
        None = no limit.
    """
    self.seq_length = seq_length
    self.class_limit = class_limit
    self.sequence_path = os.path.join('data', 'sequences')
    self.max_frames = 300  # max number of frames a video can have for us to use it

    # Get the data.
    self.data = self.get_data()

    # Get the classes.
    self.classes = self.get_classes()

    # Now do some minor data cleaning.
    self.data = self.clean_data()

    self.image_shape = image_shape

@staticmethod
def get_data():
    """Load our data from file."""
    with open(os.path.join('data', 'data_file.csv'), 'r') as fin:
        reader = csv.reader(fin)
        data = list(reader)

    return data

def clean_data(self):
    """Limit samples to greater than the sequence length and fewer
    than N frames. Also limit it to classes we want to use."""
    data_clean = []
    for item in self.data:
        if int(item[3]) >= self.seq_length and int(item[3]) <= self.max_frames \
                and item[1] in self.classes:
            data_clean.append(item)

    return data_clean

def get_classes(self):
    """Extract the classes from our data. If we want to limit them,
    only return the classes we need."""
    classes = []
    for item in self.data:
        if item[1] not in classes:
            classes.append(item[1])

    # Sort them.
    classes = sorted(classes)

    # Return.
    if self.class_limit is not None:
        return classes[:self.class_limit]
    else:
        return classes

def get_class_one_hot(self, class_str):
    """Given a class as a string, return its number in the classes
    list. This lets us encode and one-hot it for training."""
    # Encode it first.
    label_encoded = self.classes.index(class_str)

    # Now one-hot it.
    label_hot = to_categorical(label_encoded, len(self.classes))

    assert len(label_hot) == len(self.classes)

    return label_hot

def split_train_test(self):
    """Split the data into train and test groups."""
    train = []
    test = []
    for item in self.data:
        if item[0] == 'train':
            train.append(item)
        else:
            test.append(item)
    return train, test

def get_all_sequences_in_memory(self, train_test, data_type):
    """
    This is a mirror of our generator, but attempts to load everything into
    memory so we can train way faster.
    """
    # Get the right dataset.
    train, test = self.split_train_test()
    data = train if train_test == 'train' else test

    print("Loading %d samples into memory for %sing." % (len(data), train_test))

    X, y = [], []
    for row in data:

        if data_type == 'images':
            frames = self.get_frames_for_sample(row)
            frames = self.rescale_list(frames, self.seq_length)

            # Build the image sequence
            sequence = self.build_image_sequence(frames)

        else:
            sequence = self.get_extracted_sequence(data_type, row)

            if sequence is None:
                print("Can't find sequence. Did you generate them?")
                #raise
                raise Exception("I know python!")

        X.append(sequence)
        y.append(self.get_class_one_hot(row[1]))

    return np.array(X), np.array(y)

@threadsafe_generator
def frame_generator(self, batch_size, train_test, data_type):
    """Return a generator that we can use to train on. There are
    a couple different things we can return:

    data_type: 'features', 'images'
    """
    # Get the right dataset for the generator.
    train, test = self.split_train_test()
    data = train if train_test == 'train' else test

    print("Creating %s generator with %d samples." % (train_test, len(data)))

    while 1:
        X, y = [], []

        # Generate batch_size samples.
        for _ in range(batch_size):
            # Reset to be safe.
            sequence = None

            # Get a random sample.
            sample = random.choice(data)

            # Check to see if we've already saved this sequence.
            if data_type is "images":
                # Get and resample frames.
                frames = self.get_frames_for_sample(sample)
                frames = self.rescale_list(frames, self.seq_length)

                # Build the image sequence
                sequence = self.build_image_sequence(frames)
            else:
                # Get the sequence from disk.
                sequence = self.get_extracted_sequence(data_type, sample)

                if sequence is None:
                    raise ValueError("Can't find sequence. Did you generate them?")

            X.append(sequence)
            y.append(self.get_class_one_hot(sample[1]))

        yield np.array(X), np.array(y)

def build_image_sequence(self, frames):
    """Given a set of frames (filenames), build our sequence."""
    return [process_image(x, self.image_shape) for x in frames]

def get_extracted_sequence(self, data_type, sample):
    """Get the saved extracted features."""
    filename = sample[2]
    path = os.path.join(self.sequence_path, filename + '-' + str(self.seq_length) + \
        '-' + data_type + '.npy')
    if os.path.isfile(path):
        return np.load(path)
    else:
        return None

def get_frames_by_filename(self, filename, data_type):
    """Given a filename for one of our samples, return the data
    the model needs to make predictions."""
    # First, find the sample row.
    sample = None
    for row in self.data:
        if row[2] == filename:
            sample = row
            break
    if sample is None:
        raise ValueError("Couldn't find sample: %s" % filename)

    if data_type == "images":
        # Get and resample frames.
        frames = self.get_frames_for_sample(sample)
        frames = self.rescale_list(frames, self.seq_length)
        # Build the image sequence
        sequence = self.build_image_sequence(frames)
    else:
        # Get the sequence from disk.
        sequence = self.get_extracted_sequence(data_type, sample)

        if sequence is None:
            raise ValueError("Can't find sequence. Did you generate them?")

    return sequence

@staticmethod
def get_frames_for_sample(sample):
    """Given a sample row from the data file, get all the corresponding frame
    filenames."""
    path = os.path.join('data', sample[0], sample[1])
    filename = sample[2]
    images = sorted(glob.glob(os.path.join(path, filename + '*jpg')))
    return images

@staticmethod
def get_filename_from_image(filename):
    parts = filename.split(os.path.sep)
    return parts[-1].replace('.jpg', '')

@staticmethod
def rescale_list(input_list, size):
    """Given a list and a size, return a rescaled/samples list. For example,
    if we want a list of size 5 and we have a list of size 25, return a new
    list of size five which is every 5th element of the origina list."""
    assert len(input_list) >= size

    # Get the number to skip between iterations.
    skip = len(input_list) // size

    # Build our new output.
    output = [input_list[i] for i in range(0, len(input_list), skip)]

    # Cut off the last one if needed.
    return output[:size]

def print_class_from_prediction(self, predictions, nb_to_return=5):
    """Given a prediction, print the top classes."""
    # Get the prediction for each label.
    label_predictions = {}
    for i, label in enumerate(self.classes):
        label_predictions[label] = predictions[i]

    # Now sort them.
    sorted_lps = sorted(
        label_predictions.items(),
        key=operator.itemgetter(1),
        reverse=True
    )

    # And return the top N.
    for i, class_prediction in enumerate(sorted_lps):
        if i > nb_to_return - 1 or class_prediction[1] == 0.0:
            break
        print("%s: %.2f" % (class_prediction[0], class_prediction[1]))

0 个答案:

没有答案