我已经尝试了一段时间,并且越来越接近答案了,但仍然不尽然。我正在使用它作为我的方程式的基础,但似乎效果不佳
https://blog.rankone.io/2018/11/01/face-recognition-dictionary/#cmc
我有两个数组,它们的查询和图库数组的形状如下:
query_array = [文件名,功能] gallery_array = [文件名,功能]
文件名是图像文件,并且该功能是使用resnet50提取的功能。
结果看起来像这样,对我来说并不正确。
[0.8, 0.2, 0.2, 0.4, 0.2, 0.2, 0.4, 0.4, 0.0, 0.6, 0.2, 0.0, 0.4, 0.4, 0.0, 0.4, 0.0, 0.0, 0.0, 0.6, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.2, 0.0, 0.2, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
我认为随着排名的上升,它将接近100%。 1-> 10,但不是。
这是我的代码
# Gallery is a array[image, feature]
# query is a array[image, feature]
def find_cmc(query, gallery):
print("Calculating CMC")
# Create rank array to see where a person is positivly id
correct = np.zeros(len(gallery))
total_at_i = np.zeros(len(gallery))
total_compared = 0
for query_id, query_feature in query:
# total number of images in the gallery
dist = []
# Cacluate the distance between query and each image in the gallery
for gallery_img, gallery_feature in gallery:
# Use eucludean distance
d = np.linalg.norm(query_feature - gallery_feature)
# Add to the dist array
dist.append([gallery_img, d])
# Sort the array by smallest to larget distance [1] index
dist.sort(key=custom_sort)
# Now check to see where the positive images are found
for i in range(0,len(dist)):
total_compared +=1
total_at_i[i] += 1
name,_,_ = get_info(dist[i][0])
if name == query_id:
# Increase rank by 1 as there is a match
correct[i] +=1
# Get the percentage for each rank@i
ret_cmc = []
for i in range(0,len(correct)):
percent = correct[i]/total_at_i[i]
ret_cmc.append(percent)
return ret_cmc
在此方面的任何帮助将不胜感激。
---编辑--- 我一直在进行加法运算,但仍然可以按我认为应该的那样正确处理
# Get the percentage for each rank@i
ret_cmc = []
correct_sum = 0
for i in range(0,len(correct)):
correct_sum += correct[i]
#percent = correct_sum/total_compared
percent = correct_sum/total_at_i[i]
#percent = correct[i]/total_at_i[i]
ret_cmc.append(percent)
return ret_cmc
-----编辑-----
好的,我想我已经弄清楚了,有人可以就此提出我的意见,因为它似乎工作得很好。
最新代码
def cmc(querys, gallery, topk):
ret = np.zeros(topk)
valid_queries = 0
all_rank = []
sum_rank = np.zeros(topk)
for query in querys:
q_id = query[0]
q_feature = query[1]
# Calculate the distances for each query
distmat = []
for img, feature in gallery:
# Get the label from the image
name,_,_ = get_info(img)
dist = np.linalg.norm(q_feature - feature)
distmat.append([name, dist, img])
# Sort the results for each query
distmat.sort(key=custom_sort)
# Find matches
matches = np.zeros(len(distmat))
# Zero if no match 1 if match
for i in range(0, len(distmat)):
if distmat[i][0] == q_id:
# Match found
matches[i] = 1
rank = np.zeros(topk)
for i in range(0, topk):
if matches[i] == 1:
rank[i] = 1
# If 1 is found then break as you dont need to look further path k
break
all_rank.append(rank)
valid_queries +=1
#print(all_rank)
sum_all_ranks = np.zeros(len(all_rank[0]))
for i in range(0,len(all_rank)):
my_array = all_rank[i]
for g in range(0, len(my_array)):
sum_all_ranks[g] = sum_all_ranks[g] + my_array[g]
sum_all_ranks = np.array(sum_all_ranks)
print("NPSAR", sum_all_ranks)
cmc_restuls = np.cumsum(sum_all_ranks) / valid_queries
print(cmc_restuls)
return cmc_restuls
答案 0 :(得分:0)
我对此进行了非常艰苦的测试,似乎得出了我认为正确的结论。
def cmc(querys, gallery, topk):
ret = np.zeros(topk)
valid_queries = 0
all_rank = []
sum_rank = np.zeros(topk)
for query in querys:
q_id = query[0]
q_feature = query[1]
# Calculate the distances for each query
distmat = []
for img, feature in gallery:
# Get the label from the image
name,_,_ = get_info(img)
dist = np.linalg.norm(q_feature - feature)
distmat.append([name, dist, img])
# Sort the results for each query
distmat.sort(key=custom_sort)
# Find matches
matches = np.zeros(len(distmat))
# Zero if no match 1 if match
for i in range(0, len(distmat)):
if distmat[i][0] == q_id:
# Match found
matches[i] = 1
rank = np.zeros(topk)
for i in range(0, topk):
if matches[i] == 1:
rank[i] = 1
# If 1 is found then break as you dont need to look further path k
break
all_rank.append(rank)
valid_queries +=1
#print(all_rank)
sum_all_ranks = np.zeros(len(all_rank[0]))
for i in range(0,len(all_rank)):
my_array = all_rank[i]
for g in range(0, len(my_array)):
sum_all_ranks[g] = sum_all_ranks[g] + my_array[g]
sum_all_ranks = np.array(sum_all_ranks)
print("NPSAR", sum_all_ranks)
cmc_restuls = np.cumsum(sum_all_ranks) / valid_queries
print(cmc_restuls)
return cmc_restuls
我知道这是一件很难解决的事情,所以我希望这对我有帮助的人有所帮助,因为没有真正好的方法或方法来实现这一目标。 所以除非