使用cv2.findContours()
可以创建“稀疏”(CHAIN_APPROX_SIMPLE)或“满”(CHAIN_APPROX_NONE)的轮廓。如何将“稀疏”轮廓转换为“完整”轮廓?
我没有轮廓的源图像(形状是已知的),只有轮廓,它们是“稀疏的”(CHAIN_APPROX_SIMPLE)。从这个“稀疏”表示中,我想解析“完整”(CHAIN_APPROX_NONE)表示,以便可以使用它从其他图像访问轮廓强度。
我的临时解决方案(请参见代码段)是使用cv2.drawContours()
,它从“稀疏”轮廓表示中绘制所有轮廓像素。结果是一张图片,我能够从生成的图片中提取索引,例如使用np.argwhere()
。
但是,考虑到cv2.drawContours()
在绘制结果图像之前可能已经在内部具有这些索引,因此这一额外步骤似乎没有必要。我想我想要的是cv2.drawContours()
的不带绘图部分的变体,或者是输出“完整”轮廓表示而不是图像的选项。
我的临时解决方案的另一个问题是它不保留原始轮廓中的点的顺序。我想知道cv2.drawContours()
是否能够在将结果展平为图像之前在内部重新创建完整的有效轮廓?
opencv的其他功能是否可以使用此功能,也许是cv2.drawContours()
内部使用的更基本的功能?
import numpy as np
import cv2
# shape (Y,X)
shape = np.array((5, 5))
# sparse contour (X,Y)
sparse_contours = [np.array(
[[[1, 0]],
[[1, 4]],
[[3, 4]],
[[3, 0]]], dtype=np.int32)]
def full_contour_from_contour(shape, contour):
# switch shape from y,x to x,y
shp = shape[[1,0]]
arr = np.zeros(shp, dtype=np.int32)
cv2.drawContours(arr, [contour], 0, 1, 1)
idx = np.argwhere(arr==1)
# reorder Y,X -> X,Y
idx = idx[:, [1, 0]]
# reshape to contour layout
rows, cols = idx.shape
idx = idx.reshape(rows, 1, cols)
return idx.astype(np.int32)
full_contour = full_contour_from_contour(shape, sparse_contour)
# output
# these are correct pixels, with pixels in sparse contour also
# part of the full contour. However, the full contour is not
# necessarily correct or even valid due to
# lost information regarding point sequence along the contour)
[[[1 0]]
[[2 0]]
[[3 0]]
[[1 1]]
[[3 1]]
[[1 2]]
[[3 2]]
[[1 3]]
[[3 3]]
[[1 4]]
[[2 4]]
[[3 4]]]
答案 0 :(得分:0)
当您查看文档时:https://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=findcontours#findcontours 它指出它们之间的区别在于CHAIN_APPROX_NONE存储每个像素,而CHAIN_APPROX_SIMPLE仅存储形成轮廓线的端点。因此,您可以简单地构造连接轮廓中每对连续顶点的线,以获得近似表示的近似值。属于该线的每个像素也属于轮廓。
答案 1 :(得分:0)
与suggestion一致,这是一个似乎可以解决我的问题的代码段。
def full_from_sparse(contour):
horizontal = np.array([1, 0], 'int')
vertical = np.array([0, 1], 'int')
diagonal = np.array([1, 1], 'int')
def _get_points(p0, p1):
# find all points on line connecting p0 and p1,
# including p0, excluding p1
# line must be horizontal, vertical or diagonal
diff = p1-p0
if np.max(np.abs(diff)) <= 1:
# p0 and p1 are neighbor points
# or duplicate points, i.e.g no in-between points
return [p0]
if diff[0] == 0:
# vertical
fac = diff[1]
inc = vertical
elif diff[1] == 0:
# horizontal
fac = diff[0]
inc = horizontal
elif diff[0] == diff[1]:
# diagonal
fac = diff[0]
inc = diagonal
else:
raise Exception("points not connected", p0, p1)
return [p0 + _fac*inc for _fac in range(0, fac, np.sign(fac))]
full = []
points = contour[:, 0, :]
for i in range(len(points)-1):
_points = _get_points(points[i], points[i+1])
full.extend(_points)
# add points from last segment, endpoint to startpoint
_points = _get_points(points[-1], points[0])
full.extend(_points)
# reshape as contour
full = np.array(full, dtype='int')
rows, cols = full.shape
return full.reshape(rows, 1, cols)