AttributeError:“ NoneType”对象在keras图层中没有属性“ _inbound_nodes”

时间:2019-07-07 22:54:01

标签: python machine-learning keras deep-learning

我想在我的卷积模型中添加一个递归的lstm层,但在尝试添加它时却遇到此错误:

AttributeError: 'NoneType' object has no attribute '_inbound_nodes'

p1,p2,p3 .... u3,u4这些功能包括不同的卷积层和最大池层...如果需要,我可以发布更多代码吗?

def UNet():
    f = [16, 32, 64, 128, 256]
    inputs = keras.layers.Input((image_size, image_size,3))
    p0 = inputs
    c1, p1 = down_block(p0, f[0],1) #128 -> 64

    c2, p2 = down_block(p1, f[1],1) #64 -> 32
    c3, p3 = down_block(p2, f[2],1) #32 -> 16
    c4, p4 = down_block(p3, f[3],1) #16->8
    bn = bottleneck(p4, f[4],1)
    u1 = up_block(bn, c4, f[3],1) #8 -> 16
    u2 = up_block(u1, c3, f[2],1) #16 -> 32
    u3 = up_block(u2, c2, f[1],1) #32 -> 64
    u4 = up_block(u3, c1, f[0],1) #64 -> 128

    outputs = keras.layers.Conv2D(1, (1, 1), padding="same", activation="sigmoid")(u4)
    print('shape',outputs.shape) ##it's output is (?,128,128,1)
    outputs=tf.reshape(outputs,[128*128,1,1])
    outputs=keras.layers.LSTM(1)(outputs)

    outputs=tf.reshape(outputs,[128,128,1])
    outputs=keras.layers.Dense(units=1)(outputs)
    model = keras.models.Model(inputs, outputs)
    return model

0 个答案:

没有答案