我正在尝试在CNN中添加一些固定的kernels,请参见下面的代码。
这是我创建内核的方式:
# Kernels
def create_kernel(x):
t = pipe(
x,
lambda x: tf.constant(x, dtype=tf.float32),
lambda x: tf.reshape(x, [3, 3, 1, 1]))
return t
k_edge1 = create_kernel([1, 0, -1, 0, 0, 0, -1, 0, 1])
k_edge2 = create_kernel([0, 1, 0, 1, -4, 1, 0, 1, 0])
k_edge3 = create_kernel([-1, -1, -1, -1, 8, -1, -1, -1, -1])
我的卷积网络就像:
# Convolution network
# Input layer
l_input = Input(shape=(28**2, ))
# Reshape layer
l_reshape = Reshape(target_shape=(28, 28, 1))(l_input)
# Convolution layers
l_conv1 = Conv2D(filters=20, kernel_size=(3, 3), padding='valid')(l_reshape)
l_edge1 = tf.nn.conv2d(l_reshape, k_edge1, strides=[1, 1, 1, 1], padding='VALID')
l_edge2 = tf.nn.conv2d(l_reshape, k_edge2, strides=[1, 1, 1, 1], padding='VALID')
l_edge3 = tf.nn.conv2d(l_reshape, k_edge3, strides=[1, 1, 1, 1], padding='VALID')
l_conv1a = Concatenate(axis=3)([l_conv1, l_edge1, l_edge2, l_edge3]) # <- The error should be caused by this line.
l_conv2 = Conv2D(filters=20, kernel_size=(3, 3), padding='valid')(l_conv1a)
l_pool1 = MaxPooling2D(pool_size=(2, 2), border_mode='valid')(l_conv2)
# Flatten layer
l_flat = Flatten()(l_pool1)
# Fully connected layers
l_fc1 = Dense(50, kernel_initializer='he_normal')(l_flat)
l_act1 = PReLU()(l_fc1)
l_fc3 = Dense(10, kernel_initializer='he_normal')(l_act1)
l_output = Activation('softmax')(l_fc1)
# Model
cnn_model = Model(l_input, l_output)
但是,出现以下错误:
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File "C:\Users\Perry Cheng\AppData\Local\conda\conda\envs\ml_py_3_6\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "C:\Users\Perry Cheng\AppData\Local\conda\conda\envs\ml_py_3_6\lib\site-packages\keras\engine\network.py", line 93, in __init__
self._init_graph_network(*args, **kwargs)
File "C:\Users\Perry Cheng\AppData\Local\conda\conda\envs\ml_py_3_6\lib\site-packages\keras\engine\network.py", line 237, in _init_graph_network
self.inputs, self.outputs)
File "C:\Users\Perry Cheng\AppData\Local\conda\conda\envs\ml_py_3_6\lib\site-packages\keras\engine\network.py", line 1353, in _map_graph_network
tensor_index=tensor_index)
File "C:\Users\Perry Cheng\AppData\Local\conda\conda\envs\ml_py_3_6\lib\site-packages\keras\engine\network.py", line 1340, in build_map
node_index, tensor_index)
File "C:\Users\Perry Cheng\AppData\Local\conda\conda\envs\ml_py_3_6\lib\site-packages\keras\engine\network.py", line 1340, in build_map
node_index, tensor_index)
File "C:\Users\Perry Cheng\AppData\Local\conda\conda\envs\ml_py_3_6\lib\site-packages\keras\engine\network.py", line 1340, in build_map
node_index, tensor_index)
[Previous line repeated 2 more times]
File "C:\Users\Perry Cheng\AppData\Local\conda\conda\envs\ml_py_3_6\lib\site-packages\keras\engine\network.py", line 1312, in build_map
node = layer._inbound_nodes[node_index]
AttributeError: 'NoneType' object has no attribute '_inbound_nodes'
经过一些测试,我认为错误来自:
l_conv1a = Concatenate(axis=3)([l_conv1, l_edge1, l_edge2, l_edge3])
有什么办法解决吗?
答案 0 :(得分:2)
Keras图层接受Keras张量而不是张量作为输入。因此,如果您想在Keras中使用tf.nn.conv2d
而不是Conv2D
层,则需要将它们包装在Lambda
层中:
l_edge1 = Lambda(lambda x: tf.nn.conv2d(x, k_edge1, strides=[1, 1, 1, 1], padding='VALID'))(l_reshape)
l_edge2 = Lambda(lambda x: tf.nn.conv2d(x, k_edge2, strides=[1, 1, 1, 1], padding='VALID'))(l_reshape)
l_edge3 = Lambda(lambda x: tf.nn.conv2d(x, k_edge3, strides=[1, 1, 1, 1], padding='VALID'))(l_reshape)
答案 1 :(得分:1)
您不能像在此处那样直接在Keras张量上使用TF函数:
l_edge1 = tf.nn.conv2d(l_reshape, k_edge1, strides=[1, 1, 1, 1], padding='VALID')
l_edge2 = tf.nn.conv2d(l_reshape, k_edge2, strides=[1, 1, 1, 1], padding='VALID')
l_edge3 = tf.nn.conv2d(l_reshape, k_edge3, strides=[1, 1, 1, 1], padding='VALID')
您应该做的只是使用Conv2D图层,然后使用layer.set_weights(array)
手动设置权重。要使重量不可训练,只需设置layer.trainable = False
,例如:
conv = Conv2D(filters=1, kernel_size(3, 3), padding='valid')
conv.set_weights(your_weight_array)
conv.trainable = False
l_edge1 = conv(l_reshape)
另外两个Conv2D层也是如此。