输入是3个具有1000个功能的独立通道。我试图通过独立的NN路径传递每个通道,然后将它们连接成一个平坦的层。然后在扁平层上应用FCN进行二进制分类。 我正在尝试将多个密集层添加在一起,就像这样:
def tst_1():
inputs = Input((3, 1000, 1))
dense10 = Dense(224, activation='relu')(inputs[0,:,1])
dense11 = Dense(112, activation='relu')(dense10)
dense12 = Dense(56, activation='relu')(dense11)
dense20 = Dense(224, activation='relu')(inputs[1,:,1])
dense21 = Dense(112, activation='relu')(dense20)
dense22 = Dense(56, activation='relu')(dense21)
dense30 = Dense(224, activation='relu')(inputs[2,:,1])
dense31 = Dense(112, activation='relu')(dense30)
dense32 = Dense(56, activation='relu')(dense31)
flat = keras.layers.Add()([dense12, dense22, dense32])
dense1 = Dense(224, activation='relu')(flat)
drop1 = Dropout(0.5)(dense1)
dense2 = Dense(112, activation='relu')(drop1)
drop2 = Dropout(0.5)(dense2)
dense3 = Dense(32, activation='relu')(drop2)
densef = Dense(1, activation='sigmoid')(dense3)
model = Model(inputs = inputs, outputs = densef)
model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy'])
return model
model = tst_1()
model.summary()
但是我得到了这个错误:
/ build_map中的(usr / local / lib / python2.7 / dist-packages / keras / engine / network.pyc(张量,finished_nodes,nodes_in_progress,图层,node_index,tensor_index) 1310 ValueError:如果检测到循环。 1311“”“ -> 1312节点= layer._inbound_nodes [node_index] 1313 1314#防止循环。
AttributeError:“ NoneType”对象没有属性“ _inbound_nodes”
答案 0 :(得分:3)
问题是使用inputs[0,:,1]
分割输入数据不会作为keras层完成。
您需要创建一个Lambda层才能完成此操作。
以下代码:
from keras import layers
from keras.layers import Input, Add, Dense,Dropout, Lambda, Concatenate
from keras.layers import Flatten
from keras.optimizers import Adam
from keras.models import Model
import keras.backend as K
def tst_1():
num_channels = 3
inputs = Input(shape=(num_channels, 1000, 1))
branch_outputs = []
for i in range(num_channels):
# Slicing the ith channel:
out = Lambda(lambda x: x[:, i, :, :], name = "Lambda_" + str(i))(inputs)
# Setting up your per-channel layers (replace with actual sub-models):
out = Dense(224, activation='relu', name = "Dense_224_" + str(i))(out)
out = Dense(112, activation='relu', name = "Dense_112_" + str(i))(out)
out = Dense(56, activation='relu', name = "Dense_56_" + str(i))(out)
branch_outputs.append(out)
# Concatenating together the per-channel results:
out = Concatenate()(branch_outputs)
dense1 = Dense(224, activation='relu')(out)
drop1 = Dropout(0.5)(dense1)
dense2 = Dense(112, activation='relu')(drop1)
drop2 = Dropout(0.5)(dense2)
dense3 = Dense(32, activation='relu')(drop2)
densef = Dense(1, activation='sigmoid')(dense3)
model = Model(inputs = inputs, outputs = densef)
return model
Net = tst_1()
Net.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy'])
Net.summary()
正确创建了所需的网络。
答案 1 :(得分:0)
感谢@ CAta.RAy
我以这种方式解决了:
import numpy as np
from keras import layers
from keras.layers import Input, Add, Dense,Dropout, Lambda
from keras.layers import Flatten
from keras.optimizers import Adam
from keras.models import Model
import keras.backend as K
def tst_1():
inputs = Input((3, 1000))
x1 = Lambda(lambda x:x[:,0])(inputs)
dense10 = Dense(224, activation='relu')(x1)
dense11 = Dense(112, activation='relu')(dense10)
dense12 = Dense(56, activation='relu')(dense11)
x2 = Lambda(lambda x:x[:,1])(inputs)
dense20 = Dense(224, activation='relu')(x2)
dense21 = Dense(112, activation='relu')(dense20)
dense22 = Dense(56, activation='relu')(dense21)
x3 = Lambda(lambda x:x[:,2])(inputs)
dense30 = Dense(224, activation='relu')(x3)
dense31 = Dense(112, activation='relu')(dense30)
dense32 = Dense(56, activation='relu')(dense31)
flat = Add()([dense12, dense22, dense32])
dense1 = Dense(224, activation='relu')(flat)
drop1 = Dropout(0.5)(dense1)
dense2 = Dense(112, activation='relu')(drop1)
drop2 = Dropout(0.5)(dense2)
dense3 = Dense(32, activation='relu')(drop2)
densef = Dense(1, activation='sigmoid')(dense3)
model = Model(inputs = inputs, outputs = densef)
return model
Net = tst_1()
Net.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy'])
Net.summary()