对公司名称的数据框架进行非规范化处理[第二部分]

时间:2019-07-07 17:51:17

标签: python pandas dataframe

这是我的previous post继续对公司名称的DataFrame进行非规范化的结果。

我现在使用的修改后的表格如下:

import numpy as np
import pandas as pd

df = pd.DataFrame({'name' : ['Nitron', 'Pulset', 'Rotaxi'], 
                   'postal_code' : [1410, 1020, 1310], 
                   'previous_name1' : ['Rotory', np.NaN, 'Datec'],
                   'previous_name2' : [ np.NaN, 'Cmotor', np.NaN],
                   'previous_name3' : ['Datec', np.NaN, np.NaN],
                   'country' : ['BEL', 'ENG', 'JPN'], 
                   'city' : ['Brussels', np.NaN, np.NaN]
                  })

print(df)

| name   | postal_code | previous_name1 | previous_name2 | previous_name3 | country | city     |
|--------|-------------|----------------|----------------|----------------|---------|----------|
| Nitron | 1410        | Rotory         | NaN            | Datec          | BEL     | Brussels |
| Pulset | 1020        | NaN            | Cmotor         | NaN            | ENG     | NaN      |
| Rotaxi | 1310        | Cyclip         | NaN            | NaN            | JPN     | NaN      |

与我之前的文章相比,上面的DataFrame现在有另外两列,即countrycity系列。

我的目标保持不变:使用countrycity列为所有没有丢失公司名称的新实例添加新行 ,并删除前一个之后命名系列。在外观上,“非规范化”版本应如下所示:

| name   | postal_code | country | city     |
|--------|-------------|---------|----------|
| Nitron | 1410        | BEL     | Brussels |
| Rotory | 1410        | BEL     | Brussels |
| Datec  | 1410        | BEL     | Brussels |
| Pulset | 1020        | ENG     | NaN      |
| Cmotor | 1020        | ENG     | NaN      |
| Rotaxi | 1310        | JPN     | NaN      |
| Cyclip | 1310        | JPN     | NaN      |

花了一些时间了解 jezrael 为我的上一个问题提供的the code之后,我尝试修改/调整该新问题的解决方案,但没有成功。由于我是Python / Pandas生态系统的新手,因此非常感谢您提供其他帮助。

1 个答案:

答案 0 :(得分:2)

您可以在set_index中添加多个列,并将level=1更改为level=3,以删除MultiIndex的第四级:

df1 = (df.set_index(['postal_code','country','city'])
         .stack()
         .reset_index(level=3, drop=True)
         .reset_index(name='name')
         )
print (df1)
   postal_code country      city    name
0         1410     BEL  Brussels  Nitron
1         1410     BEL  Brussels  Rotory
2         1410     BEL  Brussels   Datec
3         1020     ENG       NaN  Pulset
4         1020     ENG       NaN  Cmotor
5         1310     JPN       NaN  Rotaxi
6         1310     JPN       NaN   Datec

第二种解决方案是在melt中添加多列:

df1 = (df.melt(['postal_code','country','city'], value_name='name')
         .drop('variable', axis=1)
         .dropna(subset=['name'])
         .reset_index( drop=True)
)
print (df1)
   postal_code country      city    name
0         1410     BEL  Brussels  Nitron
1         1020     ENG       NaN  Pulset
2         1310     JPN       NaN  Rotaxi
3         1410     BEL  Brussels  Rotory
4         1310     JPN       NaN   Datec
5         1020     ENG       NaN  Cmotor
6         1410     BEL  Brussels   Datec